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1 Linear Optimization (LO) Representable Functions

Sometimes even when the objective function is nonlinear, the problem can be reformu-
lated as a LO model. We call such objective functions as LO representable functions. To
be precise, we consider the following optimization model

min f (x)

s. t. Ax ≤ b,

x ∈ Rn,

(1)

where f (x) is a function on Rn defined by

f (x) = max
k=1,...,l

{ck0 + ck1x1 + · · ·+ cknxn}, (2)

for some given number of pieces l ∈ Z≥1 and coefficients cki ∈ R, k = 1, . . . , l, i =

0, 1, . . . , n. Clearly, f can be a nonlinear function. (Hint: take n + 1 points such that
the maximum at these points are not attained at the same index k = 1, . . . , l and derive
a contradiction.) Nevertheless, problem (1) can be rewritten as a LO model with an
additional variable y ∈ R

min y

s. t. Ax ≤ b,

y ≥ ck0 +
n

∑
i=1

ckixi, k = 1, . . . , l,

x ∈ Rn, y ∈ R.

(3)

To see this, note that

y ≥ f (x) ⇐⇒ y ≥ ck0 +
n

∑
i=1

ckixi, k = 1, . . . , l. (4)
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Thus the constraints involving y ∈ R in (3) is equivalent to y ≥ f (x). As y is not
involved in any other constraint, an optimal solution (when it exists) must have y =

f (x). Therefore, (3) preserves the optimal value and any optimal solution in x that
comes from (1).

Using such reformulation technique on the absolute value function |x| = max{x,−x},
we can build a LO model in the following example.

Example 1. A machine shop has a drill press and a milling machine which are used to produce
two parts A and B. The required time (in minutes) per unit part on each machine is shown in
the table below.

Drill press Milling machine

A 3 4
B 5 3

The shop must produce at least 50 units in total (both A and B) and at least 30 units of part A
and 20 units of B, and it can make at most 100 units of part A and 80 units of part B. Assume
that the shop can make fractional amount of the parts. The goal is to minimize the absolute
difference between the total running time of the drill press and that of the milling machine. Our
two decision variables are

30 ≤ x1 ≤ 100: units of part A to be produced,
20 ≤ x2 ≤ 80: units of part B to be produced.

The linear constraint on the total units to be produced can be written as

x1 + x2 ≥ 50.

The difference between the total running time of the drill press and that of the milling machine
is

(3x1 + 5x2)− (4x1 + 3x2) = −x1 + 2x2.

To reformulate the absolute value function |−x1 + 2x2| = max{−x1 + 2x2, x1 − 2x2}, we
need to introduce an additional decision variable

y ∈ R: absolute difference between the total running times,

and two additional linear constraints

y ≥ −x1 + 2x2,

y ≥ x1 − 2x2.
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In summary, our LO model can be written as

min y

s. t. y ≥ −x1 + 2x2,

y ≥ x1 − 2x2,

x1 + x2 ≥ 50,

30 ≤ x1 ≤ 100, 20 ≤ x2 ≤ 80, y ∈ R.

We code the LO model in the script model_machine.py and the output is displayed below.

The minimum absolute difference is 0.00.

Units of part A to be produced = 40.00

Units of part B to be produced = 20.00

A natural question is how we can tell whether a nonlinear objective function f (x)
is LO representable or not. It turns out that the answer will depend on whether we are
maximizing or minimizing our objective value. As we have seen above, for a minimiza-
tion problem, any “finite-maximum” function (as defined in (2)) is LO representable.
Using the same argument, a “finite-minimum” function can be reformulated in a LO
maximization problem, as

y ≤ min
k=1,...,l

{ck0 + ck1x1 + · · ·+ cknxn} ⇐⇒ y ≤ ck0 +
n

∑
i=1

ckixi, k = 1, . . . , l.

One important characterization of these maximum or minimum function is by convex-
ity or concavity defined as follows.

Definition 1. A function f : Rn → R is convex if for any x, y ∈ Rn and any 0 ≤ t ≤ 1, we
have f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y). A function f is concave if − f is convex.

Geometrically, the definition says that if you take a line segment between any two
points in the graph of your function and it stays above (resp. below) the graph, then it is
convex (resp. concave). You can see simple examples in Figure 1. Intuitively speaking,
a convex function bends “upward” (slope increasing in any direction), and a concave
function bends “downward” (slope decreasing in any direction).

We claim that a maximum of linear functions is always convex. To see this, let L be
an index set and f (x) := maxk∈L{ck0 + ck1x1 + · · · + cknxn}. Then for any x, y ∈ Rn
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(b) a concave function

Figure 1: Illustration of convexity and concavity

and 0 ≤ t ≤ 1, we have

f (tx + (1− t)y)

= max
k∈L
{ck0 + ck1(tx1 + (1− t)y1) + · · ·+ ckn(txn + (1− t)yn)}

= max
k∈L
{t(ck0 + ck1x1 + · · ·+ cknxn) + (1− t)(ck0 + ck1y1 + · · ·+ cknyn)}

≤ t ·max
k∈L
{ck0 + ck1x1 + · · ·+ cknxn}+ (1− t) ·max

l∈L
{cl0 + cl1y1 + · · ·+ clnyn}

= t f (x) + (1− t) f (y).

Here, the first equality is derived directly by the definition of f ; the second equality is
derived by rearranging terms (and by splitting ck0 into tck0 + (1− t)ck0); the inequality
here is due to the fact that we allow the maximum to be taken at different indices k and
l; and the last equality is again by the definition of f . By reverting the direction of the
inequality here, the argument shows that a minimum of linear functions is concave.

It is not enough by convexity or concavity alone to guarantee that the function is LO
representable. For example, if the index set is infinite (such as L = Z), then we might
need infinitely many constraints in the reformulation (4) (as each index could corre-
spond to one constraint). Thus we would also need the function to have finitely many
“pieces” for it to be LO representable. For univariate functions, this can be defined as
follows.

Definition 2. A univariate function f : R → R is piecewise linear (with finitely many
pieces), if there are points −∞ = a0 < a1 < · · · < al = +∞ such that on each interval
Ik := {x ∈ R : ak−1 < x < ak}, k = 1, . . . , l, f (x) is an affine linear function, i.e., there exist
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bk, ck ∈ R such that

f (x) = bkx + ck, ∀ x ∈ Ik, k = 1, . . . , l.

Figure 2 illustrates some univariate piecewise linear functions on the interval [0, 1].
From the figures, we can see that a convex (resp. concave) piecewise linear function
must have its dashed parts (i.e., the extension of each linear piece) below (resp. above)
the function itself. In fact, the following statements are equivalent for a univariate
piecewise linear function f (x):

(i) f (x) is convex;
(ii) f (x) = maxk=1,...,l{bkx + ck};

(iii) the points and the coefficients in Definition 2 for f (x) satisfy

f (ak) = akbk + ck = akbk+1 + ck+1, and bk ≤ bk+1 ∀ k = 1, . . . , l − 1.

The last statement essentially says that the function f (x) is continuous and has non-
decreasing slopes. A possible hint for any reader interested in the proof is that the
definition of convexity for f (x) implies that for any h > 0

f (x)− f (x− h)
h

≤ f (x + h)− f (x)
h

, ∀ x ∈ R.

This shows that the slope should be non-decreasing. Besides, taking limits of f from
both sides towards ak requires f to be continuous at ak, for k = 1, . . . , l − 1. Similarly,
the following statements are also equivalent for a piecewise linear function f (x):

(i) f (x) is concave;
(ii) f (x) = mink=1,...,l{bkx + ck};

(iii) the points and the coefficients in Definition 2 for f (x) satisfy

f (ak) = akbk + ck = akbk+1 + ck+1, and bk ≥ bk+1 ∀ k = 1, . . . , l − 1.

In practice, we may sometimes approximate a nonlinear objective function by piece-
wise linear functions. For example, given a nonlinear convex function f (x) on an inter-
val [0, 1], we can take points 0 = a0 < a1 < · · · < al−1 < al = 1, and then set

bk =
f (ak)− f (ak−1)

ak − ak−1
, ck = f (ak)− akbk, k = 1, . . . , l. (5)

An illustration is plotted in Figure 3a. This procedure is often called inner-approximation
(or over-approximation) of the nonlinear function f . Alternatively, if one can find differ-
ential information at points 0 ≤ a′1 < a′2 < · · · < a′l ≤ 1, then an outer-approximation (or
under-approximation) can be built as in Figure 3b.
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(d) neither convex nor concave

Figure 2: Illustration of piecewise linear functions
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(a) a piecewise linear inner-approximation
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(b) a piecewise linear outer-approximation

Figure 3: Illustration of inner- and outer-approximations of a nonlinear function
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Example 2. An electric power grid operator wants to find a generation plan for two generators
i = 1 and 2. The generation cost functions fi for generators i = 1, 2 are described by two
convex functions f1(x) = 2 + 0.5x + 0.01x2 and f2(x) = 3 + 0.4x + 0.02x2. The demand
in the region is 10 MW for the next hour. Assume that there is no loss in the transmission.
The goal is to minimize the total generation cost while meeting the demand. Let xi ≥ denote
the power generation from the generator i = 1, 2. The power demand constraint can then be
written as

x1 + x2 ≥ 10.

Note that it suffices to consider generation within the range [0, 10] for both generators. To
handle the nonlinearity, we build inner-approximations for the generation cost functions f1

and f2 over [0, 10], using (5) on the function values at the points x1, x2 = 0, 5, 10:

f1(x1) ⪅ max{0.55x1 + 2, 0.65x1 + 1.5}
f2(x2) ⪅ max{0.5x2 + 3, 0.7x2 + 2}.

Therefore, by introducing additional variables y1, y2 ∈ R to be the approximate generation
costs for generators i = 1, 2, we can write our approximate LO model as

min y1 + y2

s. t. x1 + x2 ≥ 10,

y1 ≥ 0.55x1 + 2,

y1 ≥ 0.65x1 + 1.5,

y2 ≥ 0.5x2 + 3,

y2 ≥ 0.7x2 + 2,

x1, x2 ≥ 0, y1, y2 ∈ R.

We code the LO model in model_generation.py and the output is displayed below.

The minimum generation cost is 10.25.

Power generation at generator 1 = 5.00.

Approximate generation cost of generator 1 = 4.75.

Power generation at generator 2 = 5.00.

Approximate generation cost of generator 2 = 5.50.

We check that at the point (x1, x2) = (5.0, 5.0), the actual generation cost ( f1(x1), f2(x2)) =

(4.75, 5.5), which agrees with the our obtained approximate generation cost (y1, y2). This
means that our approximation is tight at the obtained solution and we have found an optimal
solution exactly.
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2 LO Feasible Regions and Graphical Solutions

Other than the objective function, one may wonder what sets can be represented as the
feasible region of a LO model. Such sets are known as polyhedra, which can be defined
as follows.

Definition 3. (i) A closed halfspace H in Rn is a subset

H := {x ∈ Rn : aTx ≤ b}

for some vector a ∈ Rn and real number b ∈ R.
(ii) A polyhedron (or a polyhedral set) in Rn is an intersection of finitely many closed halfs-

paces in Rn.

Recall that a general LO feasible region can be written as X := {x ∈ Rn : Ax ≤ b}
for some matrix A ∈ Rm×n and some vector b ∈ Rm. It is then clear that X is a
polyhedron because

X =
m⋂

j=1

{
x ∈ Rn : aTj x ≤ bj

}
,

where aj is the j-th row vector of A. There could be multiple ways to represent a
polyhedron as a LO feasible region. For example, X := {x ∈ R2 : 0 ≤ x1, x2 ≤ 1}
and X′ := {x ∈ R2 : 0 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 2} are the feasible regions for two LO
problems, but they represent the sample polyhedron, which is a square of side length
1.

Similar to LO representable functions, an important characterization of LO repre-
sentable sets is convexity.

Definition 4. (i) A set X ⊆ Rn is convex if for any two points x, y ∈ X and any 0 ≤ t ≤ 1,
the point tx + (1− t)y ∈ X.

(ii) A closed convex set in Rn is an intersection of (possibly infinitely many) closed halfspaces
in Rn.

Intuitively, a set is convex if we connect any two points in the set and the line
segment would stay in the set. See Figure 4 for examples. To see that we are not
abusing terminology, we show that a closed convex set is indeed convex as follows.
Suppose J is a possibly infinite index set and

X =
⋂
j∈J

{
x ∈ Rn : aTj x ≤ bj

}
is a closed convex set for vectors aj ∈ Rn and real numbers bj ∈ R, j ∈ J. Take any

8



Operations Research 1 (ISEN 320-501) Fall 2023

points x, y ∈ X, which by definition satisfies

aTj x ≤ bj, and aTj y ≤ bj, ∀ j ∈ J.

Thus using linearity, we see that

aTj (tx + (1− t)y) = t · (aTj x) + (1− t) · (aTj y) ≤ tbj + (1− t)bj = bj.

As this holds for any j ∈ J, we conclude that tx + (1 − t)y ∈ X, which shows the
convexity of X.

Using these definitions, it is clear that a polyhedron is a closed convex set. The
converse is not necessarily true, which can be seen from a planar example in Figure 4b.

x

y

(a) Not convex

x

y

(b) Convex, not polyhedral

x
y

(c) Polyhedral

Figure 4: Non-example and examples of convex sets

Now we can finally answer the question about which functions are LO representable.
For a minimization problem with decision variables x ∈ Rn and an auxiliary variable
y ∈ R, our reformulation technique (4) requires us to write the set {(x, y) ∈ Rn+1 : y ≥
f (x)} as a polyhedron (LO feasible region), so f (x) must be a finite-maximum func-
tion, which is piecewise linear and convex. Similarly, for a maximization problem, our
reformulation requires us to write the set {(x, y) ∈ Rn+1 : y ≤ f (x)} as a polyhedron
(LO feasible region), so f (x) must be a finite-minimum function, which is piecewise
linear and concave.

By interpreting polyhedra as intersection of halfspaces can help us visualize LO
feasible regions. This is particularly useful for solving the LO problem when there are
only two variables.

Example 3. A company produces two types of baby carriers, non-reversible and reversible.
Each non-reversible carrier sells for $23, requires 2 linear yards of a solid color fabric, and
costs $8 to manufacture. Each reversible carrier sells for $35, requires 2 linear yards of a
printed fabric as well as 2 linear yards of a solid color fabric, and costs $10 to manufacture.
The company has 900 linear yards of solid color fabrics and 600 linear yards of printed fabrics
available for its new carrier collection. It can spend up to $4,000 on manufacturing the carriers.
The demand is such that all reversible carriers made are projected to sell, whereas at most 350
non-reversible carriers can be sold. The goal of the company is to maximize its profit (e.g., the
difference of revenues and expenses) resulting from manufacturing and selling the new carrier
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collection.
We define x1, x2 ≥ 0 to be the numbers of non-reversible and reversible carriers to manufacture.
Then the LO model can be written as

max 15x1 + 25x2 (profit)
s. t. x1 + x2 ≤ 450 (solid color fabric constraint)

x2 ≤ 300 (printed fabric constraint)
4x1 + 5x2 ≤ 2, 000 (budget constraint)

x1 ≤ 350 (demand constraint)
x1, x2 ≥ 0 (nonnegativity constraints).

Each constraint can be plotted on the x1-x2 plane as in Figure 5. Putting the constraints

450

450

x1

x2

(a) solid fabric constraint x1 + x2 ≤ 450

x1

x2

300

(b) printed fabric constraint x2 ≤ 300

500

400

x1

x2

(c) budget constraint 4x1 + 5x2 ≤ 2, 000

x1

x2

350

(d) demand constraint x1 ≤ 350

x1

x2

(e) nonnegativity constraints

Figure 5: Constraints in the baby carrier problem
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together, we can find optimal solutions by moving in the improving direction of the linear
objective function z = 15x1 + 25x2, as shown in Figure 6. The optimal solution is (x1, x2) =

(125, 300).

x1

x2
450

400

300

0

x∗

125 350 450 500

↙solid fabric constraint

printed fabric constraint
↓

↙demand constraint

↙budget constraint

400200

120

240

↙z = 3, 000

↙z = 6, 000

↙z∗ = 9, 375

↘
gradient

Figure 6: Feasible region and objective of the baby carriers problem

Example 4. Now suppose in Example 3, the price of a non-reversible carrier is raised to $28.
The modified LO model becomes

max 20x1 + 25x2 (profit)
s. t. x1 + x2 ≤ 450 (solid color fabric constraint)

x2 ≤ 300 (printed fabric constraint)
4x1 + 5x2 ≤ 2, 000 (budget constraint)

x1 ≤ 350 (demand constraint)
x1, x2 ≥ 0 (nonnegativity constraints).

Note that the feasible region is the same while only the improving direction (gradient) is changed.
The modified LO model can be plotted as in Figure 7. Now we can see that any points be-
tween x∗ = (125, 300) and x′ = (250, 200) are optimal and the optimal objective value is
z∗ = 10, 000.

Example 5. A retail store is planning an advertising campaign aiming to increase the number
of customers visiting its physical location, as well as its online store. The store manager would
like to advertise through a local magazine and through an online social network. The manager
estimates that each 1,000 dollars invested in magazine ads will attract 100 new customers to
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Figure 7: Feasible region and objective of the modified baby carriers problem

the store, as well as 500 new website visitors. In addition, each 1,000 dollars invested in online
advertising will attract 50 new local store customers, as well as 1,000 new website visitors. The
target for this campaign is to bring at least 500 new guests to the physical store and at least
5,000 new visitors to the online store. The decision variables are

x1 ≥ 0: budget for magazine advertising (in thousands of dollars)
x2 ≥ 0: budget for online advertising (in thousands of dollars),

and the LO model can be written as

min x1 + x2

s. t. 100x1 + 50x2 ≥ 500 (store visitors)
500x1 + 1, 000x2 ≥ 5, 000 (website visitors)

x1, x2 ≥ 0. (nonnegativity)

We can plot the feasible region in Figure 8 and find that (x1, x2) = (10/3, 10/3) is the optimal
solution with the optimal value z∗ = 20/3.

Instead of plotting the feasible regions manually, we can also use the matplotlib

package in Python to (approximately) plot them. For example, we code the plotting pro-
cedure for Examples 3 and 5 in the scripts plot_carriers.py and plot_advertising.py

and display the output in Figure 9.
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Figure 8: Feasible region and objective for advertising campaign problem
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Figure 9: Feasible regions for Examples 3 and 5
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