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1 Dual Linear Optimization Formulation

We now discuss duality, which is perhaps one of the most important concepts in math-
ematical optimization. The following example gives a motivation for our discussion.

Example 1. A carpenter makes tables and chairs for sale. A total of 150 board ft of oak and 250
board ft of pine are available. A table requires 16 board ft of oak and 30 board ft of pine, while
a chair requires 5 board ft of oak and 12 board ft of pine. Each table can be sold for $40, and
each chair for $15. Assuming that the tables and chairs can be produced in fractions, we can
define x1,x2 to be the number of tables and chairs to make, respectively, and write a LO model
to maximize the revenue for the carpenter

max 40x1 + 15x2

s. t. 16x1 + 5x2 ≤ 150, (oak constraint)

30x1 + 12x2 ≤ 250, (pine constraint)

x1, x2 ≥ 0.

Now suppose the carpenter can sell any unused oak and pine to a wood company, and also buy
additional oak and pine from it at the price of y1 and y2, respectively. How should the wood
company set the prices such that the carpenter would have the same revenue as before? To
answer this question, we can formulate this as a min-max problem

min
y1,y2≥0

max
x1,x2≥0

40x1 + 15x2 + (150− 16x1 − 5x2)y1 + (250− 30x1 − 12x2)y2.

The min-max (or sometimes minimax) problem lets the wood company determine the price first,
and then let carpenter decides the production decisions, which imply the buying/selling strate-
gies of the oak and pine. In game theory terminology, we are trying to find the equilibrium
prices between the carpenter and the wood company. Note that the inner maximization problem
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can be written as

max
x1,x2≥0

150y1 + 250y2 + (40− 15y1 − 30y2)x1 + (15− 5y1 − 12y2)x2.

If the either of the coefficients 40− 15y1 − 30y2 and 15− 5y1 − 12y2 is positive, then we can
simply increase the value of x1 or x2 to make the objective value arbitrarily large. Thus we
should have both coefficients being nonpositive. Consequently, we have an obvious solution to
the inner maximization problem x∗1 = x∗2 = 0, so the min-max problem reduces to

min 150y1 + 250y2

s. t. 15y1 + 30y2 ≥ 40, (nonpositive coefficient of x1)

5y1 + 12y2 ≥ 15, (nonpositive coefficient of x2)

y1, y2 ≥ 0.

This minimization problem is called the dual problem to the original maximization problem. We
will see below that solving the dual problem gives us prices that let the revenue of the carpenter
stays the same as before.

In general, we can formulate dual linear optimization (LO) problems based on the
idea of relaxation. Consider a LO problem with some given m′ ≤ m and n′ ≤ n:

min
n

∑
i=1

cixi

s. t.
n

∑
i=1

ajixi ≥ bj, ∀ j = 1, . . . , m′,

n

∑
i=1

ajixi = bj, ∀ j = m′ + 1, . . . , m,

xi ≥ 0, i = 1, . . . , n′,

xi ∈ R, i = n′ + 1, . . . , n.

(1)

We can relax all the constraints (both equalities and inequalities) and penalize the vio-
lation with a price vector y ∈ Rm as

min
n

∑
i=1

cixi +
m

∑
j=1

(
bj −

n

∑
i=1

ajixi

)
yj. (2)

The first part here is the original objective function, while the second part is given by
the penalty on any constraint violation. Since we are minimizing the objective value,
we would like to have a positive penalty (bj − ∑n

i=1 ajixi)yj > 0 only when there is
violation of this constraint, i.e., ∑n

i=1 ajixi < bj for any j ≤ m′, or ∑n
i=1 ajixi ̸= bj for any

j ≥ m′ + 1. Thus we should set yj to be nonnegative for each j ≤ m′ and unrestricted
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in sign for j ≥ m′ + 1. Now we want to find a tightest relaxation, in the sense that the
objective value should be as close to the original objective value as possible. Naturally
this leads to maximization in the variables y1, . . . , ym. By rearranging terms in (2), we
can write the tightest relaxation problem as

max
y1,...,ym′≥0

ym′+1,...,ym∈R

min
x1,...,xn′≥0

xn′+1,...,xn∈R

n

∑
i=1

(
ci −

m

∑
j=1

ajiyj

)
xi +

m

∑
j=1

bjyj. (3)

Note that if ci −∑m
j=1 ajiyj < 0 for some i ≤ n′, then the inner minimization would be

unbounded (as we can take xi to be arbitrarily large). The same behavior happens if
ci − ∑m

j=1 ajiyj ̸= 0 for some i ≥ n′ + 1, because xi is not restricted in sign. Therefore,
we can impose the constraints

m

∑
j=1

ajiyj ≤ ci, i = 1, . . . , n′,

m

∑
j=1

ajiyj = ci, i = n′ + 1, . . . , n,
(4)

in the outer maximization without any compromise of its optimality. Consequently,
the first summation in (3) vanishes and the inner minimization becomes trivial. We
have therefore derived our dual problem, i.e., finding the tightest relaxation, as

max
m

∑
j=1

bjyj

s. t.
m

∑
j=1

ajiyj ≤ ci, i = 1, . . . , n′,

m

∑
j=1

ajiyj = ci, i = n′ + 1, . . . , n,

yj ≥ 0, j = 1, . . . , m′,

yj ∈ R, j = m′ + 1, . . . , m.

(5)

To distinguish the problems, we also call the original problem (1) the primal problem.
The derivation above is known as Lagrangian duality and has been used beyond LO
problems, e.g., in some nonlinear optimization or integer optimization problems as
well. To save the effort of deriving the dual formulation from scratch each time, we
summarize the correspondence of the sign restrictions and inequality directions for
LO problems in Table 1.
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Table 1: Dual correspondence of constraints and variables

Minimization Maximization
= constraint ←→ free variable
≥ constraint ←→ nonnegative variable
≤ constraint ←→ nonpositive variable
free variable ←→ = constraint

nonnegative variable ←→ ≤ constraint
nonpositive variable ←→ ≥ constraint

2 Weak and Strong Duality

For notational convenience, we consider matrix forms of the primal and the dual prob-
lems:

min cTx

s. t. Ax = b,

x ≥ 0,

(P)

and
max bTy

s. t. ATy ≤ c,

y ∈ Rm.

(D)

We can see that for any primal feasible solution x = (x1, . . . , xn) and dual feasible
solution y = (y1, . . . , ym), we have

bTy = (Ax)Ty = xT(ATy) ≤ cTx. (6)

Thus if the primal problem (P) admits an optimal objective value z∗ with an optimal
solution x∗, then

bTy ≤ cTx∗ = z∗, (7)

for any dual feasible solution y ∈ Rm, which means the dual problem (D) is bounded.
Similarly, if the dual problem (D) admits an optimal objective value w∗ with an optimal
solution y∗, then

w∗ = bTy∗ ≤ cTx, (8)

for any primal feasible solution x ≥ 0, which means the primal problem (P) is bounded.
In the case where both the primal and the dual problems have optimal solutions, x∗ and
y∗, respectively, we have the inequality

w∗ = bTy∗ ≤ cTx∗ = z∗. (9)

This is called the weak duality of LO problems. We may further extend our discussion
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to some infeasible or unbounded LO problems. Recall that we can set z∗ = +∞ (resp.
z∗ = −∞) if the primal minimization problem (D) is infeasible (resp. unbounded), and
w∗ = −∞ (resp. w∗ = +∞) if the dual maximization problem (D) is infeasible (resp.
unbounded). If the primal problem is unbounded, then for any dual feasible solution
y, there exists a primal feasible solution x such that

bTy > cTx,

which contradicts with the inequality (9). Thus the dual problem must be infeasible,
in which case we may write z∗ = w∗ = −∞. Alternatively, if the dual problem is
unbounded, then by the same argument we must have an infeasible primal problem,
in which case we may write z∗ = w∗ = +∞. In fact, the equality z∗ = w∗ holds
generally for feasible primal and dual problems as well. This is known as the strong
duality result for LO problems.

Proposition 1. If the primal problem (P) has an optimal solution x∗, then the dual problem (D)
has an optimal solution y∗ with cTx∗ = bTy∗.

Proof. By assumption, the primal problem (P) is feasible and bounded. By the simplex
method (with Bland’s pivot rule), there exists a basic feasible solution x = (xB, xN), for
some basis B ⊂ {1, . . . , n} and N := {1, . . . , n} \ B, such that xB = A−1

B b and xN = 0.
Obviously, cTx∗ = cTx as both are optimal primal solutions. Let y∗ := (cTB A−1

B )T. We
first check that y∗ is a feasible solution to the dual problem (D):

ATy∗ =

[
AT

B

AT
N

]
(cTB A−1

B )T =

[
cB

(cTB A−1
B AN)

T

]
≤
[

cB

cN

]
= c.

Here the last inequality is ensured by optimality of x, where the reduced cost vector
r = cN − (cTB A−1

B AN)
T ≥ 0 (note that it is minimization). Then bTy∗ = cTB A−1

B b =

cTB xB = cTx, which implies that y∗ is an optimal solution to the dual problem (D) by
the weak duality (9).

Using the symmetry between the primal and the dual problems, Proposition 1 tells
us both have the same optimal value as long as one of them has an optimal solution. It
remains to ask the possible outcomes of the primal and the dual problems if we know
one of them is infeasible. The next example shows that it is possible for both of the
problems to be infeasible.

Example 2. Let

A =

[
2 −1
−2 1

]
, b =

[
2
−3

]
, c =

[
−5
2

]
.
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Then the primal problem (P) becomes

min − 5x1 + 2x2

s. t. 2x1 − x2 = 2,

− 2x1 + x2 = −3,

x1, x2 ≥ 0,

which is obviously infeasible due to the conflicting constraints. The dual problem (D) can be
written as

max 2y1 − 3y2

s. t. 2y1 − 2y2 ≤ −5,

− y1 + y2 ≤ 2,

y1, y2 ∈ R,

which is also infeasible because the second constraint implies 2y1 − 2y2 ≥ −4, which contra-
dicts with the first constraint.

We summarize the possible outcomes of the primal and the dual problems in the
following table, where the columns and the rows correspond to the primal and the
dual LO problem, respectively, and a 3 means possible while 7 means impossible.

Table 2: Possible outcomes of the primal and the dual LO problems

Optimal Infeasible Unbounded
Optimal 3 7 7

Infeasible 7 3 3

Unbounded 7 3 7

A very useful implication of the strong duality (Proposition 1) is a relation between
any primal and dual solutions, which is called complementary slackness.

Corollary 2. Let x denote a feasible solution to the primal problem (P) and y a feasible solu-
tion to the dual problem (D). Then x and y are simultaneously optimal solutions to their LO
problems if and only if the following condition hold:

(c− ATy)Tx = 0.

Proof. First, suppose x and y are optimal solutions. Then by Proposition 1, we know
that

0 = cTx− bTy = (c− ATy)Tx.

Conversely, by the same inequality we know that cTx = bTy. Now apply the weak
duality (9), we know that both x and y are optimal solutions.
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Corollary 2 tells us the followings: for an optimal primal solution x∗ and an optimal
dual solution y∗,

(i) if x∗i > 0 for some i = 1, . . . , n, then we must have ∑m
j=1 ajiy∗j = ci; or

(ii) if ∑m
j=1 ajiy∗j < ci for some i = 1, . . . , n, then x∗i = 0.

While our proof here is based on the particular format used in the primal (P) and the
dual (D) problems, it is straightforward to check that the complementary slackness
holds for any general LO forms. We may interpret it as the following simple rule:

Either a variable is at its bound zero, or the corresponding dual constraint
must hold as an equality.

We illustrate how we can use the complementary slackness to find an optimal solution
of a pair of LO problems below.

Example 3. Consider the LO problem:

min 3x1 + 4x2 + 2x3

s. t. x1 + 2x2 + x3 = 5,

2x1 + 3x2 + x3 = 8,

x1, x2, x3 ≥ 0.

The dual LO problem is
max 5y1 + 8y2

s. t. y1 + 2y2 ≤ 3,

2y1 + 3y2 ≤ 4,

y1 + y2 ≤ 2,

y1, y2 ∈ R.

By the complementary slackness, we must have two out of the three constraints binding at an
optimal dual solution y∗.

(i) If the second and the third constraints are binding, then we have y(1) = (2, 0), which
gives an objective value w(1) = 5y(1)1 + 8y(1)2 = 10.

(ii) If the first and the third constraints are binding, then we have y(2) = (1, 1), but this is
not feasible as it violates the second constraint.

(iii) If the first and the second constraints are binding, then we have y(3) = (−1, 2), which
gives an objective value w(3) = 5y(3)1 + 8y(3)2 = 11.

Comparing these three possibilities, we see that y∗ = y(3) = (−1, 2), which means that x∗3 = 0
for any optimal primal solution x∗. This allows us to solve a system of equations for x∗1 and x∗2 ,
which gives us x∗ = (1, 2, 0).

Sometimes it is more efficient to solve the dual problem and use the complementary
slackness to recover the primal solution.
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Example 4. Consider the following LO problem

max 5y1 + 8y2

s. t. y1 + 2y2 ≤ 3,

2y1 + 3y2 ≤ 4,

y1 + y2 ≤ 2,

y2 ≤ 1,

y1, y2 ∈ R.

Note that this is the maximization LO problem in Example 3 with one additional constraint
y2 ≤ 1. As a result, the solution y = (−1, 2) is no longer feasible for the new maximization
problem. Nevertheless, if we write out the dual LO problem

min 3x1 + 4x2 + 2x3 + x4

s. t. x1 + 2x2 + x3 = 5,

2x1 + 3x2 + x3 + x4 = 8,

x1, x2, x3, x4 ≥ 0,

we see that the optimal solution to the minimization problem in Example 3 can be extended to a
basic feasible solution x = (1, 2, 0, 0) to the new minimization problem. Thus instead of using
the big-M or the two-phase simplex method on the maximization LO problem, we can use the
known solution to “warm start” our minimization problem. We convert our problem into a
maximization problem with the objective function

z = −3x1 − 4x2 − 2x3 − x4,

and write the raw tableau as follows.

z x1 x2 x3 x4 rhs basis
1 3 4 2 1 0 z
0 1 2 1 0 5 x1

0 2 3 1 1 8 x2

Through elementary row operations, the standard initial tableau should be as follows.

z x1 x2 x3 x4 rhs basis
1 0 0 1 −1 −11 z
0 1 0 −1 2 1 x1

0 0 1 1 −1 2 x2
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By choosing x4 as the entering variable and x1 as the leaving variable, we get the new tableau
below.

z x1 x2 x3 x4 rhs basis
1 1/2 0 1/2 0 −21/2 z
0 1/2 0 −1/2 1 1/2 x4

0 1/2 1 1/2 0 5/2 x2

This tableau gives an optimal solution x∗ = (0, 5/2, 0, 1/2) with an optimal value z∗ =

−21/2. By the complementary slackness, we know that for an optimal dual solution y∗, the
second and the fourth constraints must be binding:

2y∗1 + 3y∗2 = 4,

y∗2 = 1.

Then it is straightforward to see that y∗ = (1/2, 1), with the objective value w∗ = 5y∗1 +

8y∗2 = 21/2 = −z∗, which confirms that we have found an optimal solution.

The procedure in Example 4 is a simple illustration of what is known as the dual
simplex method. The high-level idea behind the dual simplex method is that when a LO
problem is modified, we may still be able to reuse some of the found information to
make assertions about or accelerate the solution to the modified problem. This idea
leads to sensitivity analysis, which is discussed below.

3 Sensitivity Analysis

We begin with the assumption that we have found an optimal solution x̄ to the primal
LO problem (P) with the basis B ⊂ {1, . . . , n}, such that the simplex tableau can be
written as

z xB xN rhs
1 0 −(cN − cTB A−1

B AN) cTB A−1
B b

0 I A−1
B AN A−1

B b

(10)

where N := {1, . . . , n} \ B, and r = cN − cTB A−1
B AN ≥ 0 due to the minimization in (P).

We discuss some possible changes to the problem data c, b, and A, respectively, in the
following.

3.1 Changing the objective coefficients

We consider a new objective function z = (c + d)Tx for some d ∈ Rn, which can be par-
titioned into dB and dN in the same way c is. Note that the solution x̄ remains feasible
to the modified problem as no constraint is changed. The objective value associated
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with the solution x̄ is changed to

(cB + dB)
TA−1

B b = cTB A−1
B b + dTB A−1

B b.

The difference here is the product of the change in the basic variable coefficient dB and
the constraint right-hand side A−1

B b. To check the optimality of the incumbent solution
x̄, we need to calculate the modified reduced cost

r′ := (cN + dN)− (cB + dB)
TA−1

B AN = r + (dN − dTB A−1
B AN).

The difference here can be calculated by the change of objective coefficients dB and dN,
and the constraint coefficients in the tableau A−1

B AN. The solution x̄ remains optimal
if and only if r′ ≥ 0.

3.2 Changing the constraint coefficients

If any constraint coefficient associated with the basic variables AB is changed, then the
inverse A−1

B is also changed (in a nonlinear way), so that we need to recompute it to
get the coefficients for xN and the right-hand sides before we can verify feasibility or
optimality of x̄. However, if only the coefficients associated with the nonbasic variables
AN are changed, for example, to AN + DN, then x̄ remains feasible with the constraint
coefficients A−1

B AN changed to A−1
B (AN + DN). To check the optimality, note that the

reduced cost is modified to

r′ := cN − cTB A−1
B (AN + DN) = r− cTB A−1

B DN.

If we have a dual optimal solution ȳ = (cTB A−1
B )T, then the difference in the reduced

cost can be calculated more conveniently by ȳTDN.

3.3 Changing the constraint right-hand sides

Suppose the constraint right-hand side is changed from b to b + d for some vector
d ∈ Rm. Then the constraint right-hand side is changed to

A−1
B (b + d) = A−1

B b + A−1
B d.

In general, we would need to compute the inverse A−1
B to obtain the difference A−1

B d. If
the new right-hand side A−1

B (b+ d) is nonnegative, then the solution x̄ remains feasible
and optimal, because the reduced cost r is unchanged. If the right-hand side A−1

B (b+ d)
is no longer nonnegative, or if the inverse A−1

B is challenging to compute, while the
dual solution ȳ is available, then we can use the dual simplex method (as described in
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Example 4) to find an optimal dual solution to the problem

max (b + d)Ty

s. t. ATy ≤ c,

y ∈ Rm,

and recover a primal optimal solution using complementary slackness. Moreover, if
the tableau associated with ȳ is known, then the change of the optimal value can be
seen from the dual problem with a changed objective coefficient vector.

3.4 Adding a new variable or constraint

If a new variable xn+1 is added into our problem (P), then the solution (x1, . . . , xn, xn+1) =

(x̄1, . . . , x̄n, 0) is feasible. We can set B to be the same basis, while N ← N ∪ {n + 1},
so we can start our simplex method from the solution (x̄, 0). Given an+1 ∈ Rn and
cn+1 ∈ R, we can set

DN =


0 . . . 0 an+1,1
... . . . ...

...
0 · · · 0 an+1,m


and calculate the modified reduced cost by

r′ = (cN, cn+1)− cTB A−1
B DN.

The solution x̄ remains optimal if and only if r′ ≥ 0, or equivalently, cn+1 ≥ cTB A−1
B an+1.

If a new constraint is added, then the primal solution x̄ may not be feasible any
more. However, on the dual side we are basically adding a new variable to the prob-
lem (D), so the solution (ȳ, 0) remains feasible. Thus we can start our dual simplex
method as we did in Example 4.
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