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1 Basics of Mathematical Optimization

A mathematical optimization problem has either of the following forms:

min f (x)

s. t. x ∈ X
or

max f (x)

s. t. x ∈ X.
(1.1)

Here, X is a set of variables x, while f is a function defined on X such that we can
compare its values (partially ordered). Let R denote the real numbers. In this course,
and in many real-world problems, the set X is a subset of some n-dimensional real
vector space X ⊆ Rn and f : Rn → R takes value in real numbers. We call the set X the
feasible region of the problem, the variables x the decision variables, and the function f the
objective function. Any x ∈ Rn is feasible if x ∈ X and infeasible otherwise. When X = ∅,
we say that the problem is infeasible.

The minimum or maximum value of the objective function is called the optimal value
of the optimization problem, if it exists (Example 1.1). Certain values of the decision
variables x∗ ∈ Rn are called an optimal solution if f (x∗) = minx∈X f (x) or f (x∗) =

maxx∈X f (x), and denoted as x∗ ∈ arg minx∈X f (x) or x∗ ∈ arg maxx∈X f (x). Despite
some notational difference, we do not really need to develop different theories for the
two forms because we can transform maxx∈X f (x) into minx∈X − f (x), where only the
sign of the optimal value is changed and the set of optimal solutions remains unchanged.
For now, we only discuss minimization problems for notational convenience.

An optimization problem does not necessarily have any optimal value or optimal
solutions. When it does, it may not have a unique optimal solution. Thus to be rigorous,
one would only say “the” optimal solution when it exists and is known to be unique.

Example 1.1. • Let X = R and f (x) = x. For any x ∈ R, there is a real number a < x.
Therefore, f does not have a minimum on X. This also implies that the optimization
problems minx∈X f (x) do not have optimal solutions.

• Let X = {x ∈ R : 0 < x < 1} ⊆ R and f (x) = x. For any x ∈ X, notice that
a := x/2 ∈ X. Clearly f (a) < f (x) so f does not have a minimum on X. This also
implies that the optimization problems minx∈X f (x) do not have optimal solutions.
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• Let X = {x ∈ R : x ≥ 1} ⊆ R and f (x) = 1/x. Notice that f (x) > 0 for any x ∈ X,
and for any a > 0, we can find x = 1 + 1/a ∈ X such that

f (x) =
1
x
=

a
a + 1

< a.

In plain words, no matter how small a positive number a is, we can always find a decision
variable x such that f (x) < a. Therefore, the optimization problem minx∈X f (x) does
not have optimal solutions.

• Let X = R and f (x) = 0 (i.e., a constant function). Any number x ∈ R is an optimal
solution to both the minimization problem, and therefore, the optimization problem does
not have a unique solution.

We say a minimization problem is bounded if we can find a real number a ∈ R such
that f (x) > a for all feasible decision variables x ∈ X, and unbounded otherwise. When
the optimal value is not guaranteed to exist, some people write inf instead of min to
denote the largest such lower bound, and use the convention that the optimal value
of an unbounded minimization problem is −∞. Similarly, the smallest upper bound
of a maximization problem is sometimes denoted as sup and the optimal value of an
unbounded maximization problem is +∞. With this convention, an infeasible minimiza-
tion (resp. maximization) problem has its optimal value +∞ (resp.−∞). Please note that
the infinity notation is not a real number and should be treated with care. Whenever a
problem is unbounded or infeasible, there is no optimal solution, arg minx∈X f (x) = ∅.

When the optimization problem is bounded, the feasible region is closed, and the
objective function is continuous, then the existence of the optimal value and optimal
solutions is guaranteed. We do not define continuous functions in this class, but the
common elementary functions (e.g. linear, polynomial, rational power, exponential,
trigonometric, and their sums, products, inverses, compositions) are all continuous
functions inside their domains. Using these functions in nonstrict inequalities would
automatically define a closed feasible region. Requiring some of the variables to be
integers also leads to a closed feasible region.

In this course, we will mostly consider the case where the feasible region X consists of
discrete or continuous values, and is defined functionally by a finite number of equalities
and inequalities. That is, given an index n′ ≤ n and functions g1, . . . , gm : Rn → R,

X := {x ∈ Zn′ ×Rn−n′ : gi(x) ≤ 0, i = 1, . . . , m′, gj(x) = 0, j = m′ + 1, . . . , m}. (1.2)

Each of the equalities or inequalities is called a (functional) constraint on our decision
variables x. We are using the convention gi(x) ≤ 0 for i = 1, . . . , m′ because any
inequality g′(x) ≥ 0 can be equivalently rewritten as −g′(x) ≤ 0, and only considering
nonstrict inequalities out of the concern of optimal solution existence, as discussed
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above. The optimization problem (1.1) with a feasible region (1.2) can be more directly
written as

min f (x)

s. t. gi(x) ≤ 0, i = 1, . . . , m′,

gj(x) = 0, j = m′ + 1, . . . , m,

x ∈ Zn′ ×Rn−n′

(1.3)

without the need to explicitly specify the set X. With any functional constraint (1.3),
i.e., m > 0, the problem is called constrained optimization, and unconstrained otherwise.
We say that the problem (1.3) is linear if f , g1, . . . , gm are all affine linear functions, and
nonlinear otherwise. When all of the variables must take integer values, i.e., n′ = n, we
say that the problem (1.3) is discrete or integer optimization; if all of the variables can take
continuous values, i.e., n′ = 0, then the problem is often called continuous optimization;
and in the case 0 < n′ < n we say that the problem is mixed-integer optimization.

For constrained optimization modeling, we can follow the procedure below.
(i) Describe the relevant data of the problem.

(ii) Identify and describe the decision variables.
(iii) Describe the sign, bounds, and type restrictions on individual variables.
(iv) Write the constraints in terms of the decision variables.

• If any additional variable is needed, go back to Step (ii).
(v) Write the objective function in terms of the decision variables.

• If any additional variable is needed, go back to Step (ii).

Example 1.2. One wants to design a aluminum can in the shape of a cylinder with height
h and radius r with the minimum usage of aluminum (Figure 1.1), such that the following
requirements are satisfied.

• The height h must be at least three times as large as the radius r.
• The height h can be at most four times as large as the radius r.
• The volume needs to be at least V.

h

2r Volume:
πr2h

Surface area:
2πr2 + 2πrh

Figure 1.1: A cylindrical can of height h and radius r

To formulate an optimization problem, let (r, h) ∈ R2 be our decision variables. Assuming the
aluminum sheet has a fixed thickness, the amount of aluminum used is determined by the surface
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area f (r, h) = 2πr + 2πrh, which will be our objective function. For the first requirement, we
can write it as a constraint

h ≥ 3r ⇐⇒ −h + 3r ≤ 0.

Similarly, for the second requirement, we can write it as

h ≤ 4r ⇐⇒ h− 4r ≤ 0.

The volume of this cylindrical can is πr2h, so with the given parameter V, the last requirement
can be written as

V ≤ πr2h ⇐⇒ V − πr2h ≤ 0.

While the variables r and h must of course be nonnegative, we do not need to add bounds r ≥ 0
and h ≥ 0 because the first two constraints imply that 4r ≥ h ≥ 3r, which guarantees r ≥ 0
and hence also h ≥ 3r ≥ 0. To summarize, we have formulated the following optimization
problem.

min 2πr2 + 2πrh

s. t. − h + 3r ≤ 0,

h− 4r ≤ 0,

V − πr2h ≤ 0,

r, h ∈ R.

This is an example of continuous and nonlinear optimization problem.

2 Linear Optimization I: Simple Models

2.1 Linear Optimization Formulations

A linear optimization (LO) model is a constrained optimization model with continuous
variables, affine linear constraints, and a linear objective function. Recall that a function
f : Rn → R is called affine linear if there exist f0, f1, . . . , fn ∈ R such that

f (x) = f0 + f1x1 + · · ·+ fnxn,

for any (x1, . . . , xn) ∈ Rn. It is further linear if f0 = 0. Thus given problem data
c1, . . . , cn, b1, . . . , bm ∈ R, and aij ∈ R for i = 1, . . . , n and j = 1, . . . , m, a simple form of
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linear optimization can be formulated by

min / max c1x1 + · · · + cnxn

s. t. a11x1 + · · · + a1nxn ≤ b1

... . . . ...
...

am1x1 + · · · + amnxn ≤ bm

x1, · · · xn ∈ R

(2.1)

or simply as

min / max
n

∑
i=1

cixi

s. t.
n

∑
i=1

ajixi ≤ bj, j = 1, . . . , m,

xi ∈ R, i = 1, . . . , n.

An alternative way is to use a matrix and vectors

A =


a11 · · · a1n
... . . . ...

am1 · · · amn

 , b =


b1
...

bm

 , c =


c1
...

cn

 , (2.2)

and write our LO model more compactly as

min / max cTx

s. t. Ax ≤ b,

x ∈ Rn.

(2.3)

Here, the convention is that for any two vectors u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn,
we write

u ≤ v ⇐⇒ ui ≤ vi, i = 1, . . . , n.

We claim that any linear optimization problem in general can be transformed into the
above simple form (2.1) or (2.2). We have already seen that an inequality constraint
Ax ≥ b can be rewritten as −Ax ≤ −b. When we have equality constraints, we can
always reformulate them as

Aeqx = beq ⇐⇒
[

Aeq

−Aeq

]
x ≤

[
beq

−beq

]
. (2.4)
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When we have explicit bounds on variables, for example,

xlb
i ≤ xi ≤ xub

i , i = 1, . . . , n, (2.5)

we can also write them as inequality constraints, with ei ∈ Rn that has 1 in its ith
component and 0 in all other components,[

−eTi
eTi

]
x ≤

[
−xlb

i
xub

i

]
. (2.6)

Therefore, the formulation (2.1) or (2.2) is a conceptually simple way of writing any LO
model. In practice, however, it is not always necessary that we convert a LO model into
such formulation.

Example 2.1. A farmer wants to determine how many acres of corn and wheat to plant this
year. Related information is given as follows.

• An acre of wheat yields 25 bushels of wheat and requires 10 hours of labor per week.
• An acre of corn yields 10 bushels of corn and requires 4 hours of labor per week.
• All wheat and corn can be sold at $4 a bushel.
• Seven acres of land and 40 hours of labor per week are available.
• Government regulations require that at least 30 bushels of corn be produced.

The goal is to maximize the total revenue. To formulate it as a LO model, let x1 denote the
number of acres of corn to plant and x2 the number of acres of wheat to plant this year, both of
which are continuous and nonnegative

x1, x2 ≥ 0 ⇐⇒ −x1 ≤ 0,−x2 ≤ 0.

Their upper bounds are not explicitly given to us. For the first constraint, we notice that our
land area is limited

x1 + x2 ≤ 7.

We write the labor time restriction as our second constraint

4 · x1 + 10 · x2 ≤ 40.

The government regulations on corn production gives us the third constraint

10 · x1 ≥ 30 ⇐⇒ −x1 ≤ −3.

Note that the variable bound −x1 ≤ 0 is implied by this constraint and can thus be discarded.
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The objective is to maximize the revenue, which is

max 4 · 10 · x1 + 4 · 25 · x2.

This LO model can also be written in the matrix form (2.2) with

A =


1 1
4 10
−1 0
0 −1

 , b =


7

40
−3
0

 , c =

[
40
100

]
.

2.2 Computer Modeling Tools and Solvers

We have seen two mathematically equivalent ways of writing a LO model. However,
depending on the input problem data, sometimes it is more convenient to use the first
way (2.1), rather than the second one (2.2), in terms of computer programming. We
will mainly use Python 3.11 for our computer programming. There are two types of
computer tools used for optimization problems:

• modeling interface, which facilitates model building by providing variable and
constraint handles, and sometimes also a domain-specific language for constraints
and objective expressions;

• underlying solver, which takes the problem data and executes appropriate numer-
ical algorithms that aim to find optimal solutions.

For this course, we use the following two Python packages: OR-Tools 9.5 and SciPy 1.11.
The installation guides can be found on https://developers.google.com/optimization/

install/python and https://scipy.org/install/, respectively. The package OR-Tools

provides a full modeling interface to LO and mixed-integer linear optimization (MILO)
problems. Its installation automatically includes some open-source solvers, such as
GLOP and PDLP, and it also connects to proprietary solvers such as Gurobi and CPLEX. The
package SciPy is a popular scientific computing Python package, which provides a thin
wrapper of a powerful open-source LO and MILO solver HiGHS. Next we briefly describe
and compare ways of building and solving LO models using OR-Tools and SciPy.

We illustrate the modeling using Example 2.1 and begin with OR-Tools, which is
often the more convenient one to use, especially for beginners. The module can be
loaded as follows.

from ortools.linear_solver import pywraplp

Next we declare a LO solver, GLOP.

solver = pywraplp.Solver.CreateSolver("GLOP")

To define continuous variables, we can use the NumVar function in the Solver class.
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x1 = solver.NumVar(0.0, solver.infinity(), "x1")

x2 = solver.NumVar(0.0, solver.infinity(), "x2")

The first two arguments are the lower and upper bounds of the defined variable (as
defind in (2.5)). Here, we set the lower bounds to be 0.0, and because we do not know
any upper bound of the variables, we put solver.infinite() (i.e., +∞) as the second
argument. The third argument, "x1" or "x2", is the variable name, which can be of help
if we want to debug or export the model later. The constraints in Example 2.1 can be
coded as follows.

solver.Add(x1 + x2 <= 7)

solver.Add(4*x1 + 10*x2 <= 40)

solver.Add(-x1 <= -3)

To set the objective function, we can use the following code.

solver.Maximize(40*x1 + 100*x2)

Now we are ready to let the solver solve this model.

status = solver.Solve()

The status stores the information returned by the solver, which can be used to check
whether we have found an optimal solution.

if status == pywraplp.Solver.OPTIMAL:

print("Optimal value =", solver.Objective().Value())

print("x1 =", x1.solution_value())

print("x2 =", x2.solution_value())

else:

print("The solver is unable to find an optimal solution.")

After executing the script, an output is displayed below.

Optimal value = 399.99999999999994

x1 = 3.0

x2 = 2.7999999999999994

As OR-Tools connects to different solvers, we can replace the definition of solver in the
OR-Tools model with the following line.

solver = pywraplp.Solver.CreateSolver("Clp")

Without any changes to other parts, the output could become the following.

Optimal value = 400.0

x1 = 5.0

x2 = 2.0

9



ISEN 320 Spring 2025

This shows us that calling different underlying solvers may give different optimal
solutions, even when the model is unchanged.

Given the problem data matrix and vectors, we can also use SciPy to solve this LO
model. The modules can be loaded using the following code.

import numpy as np

from scipy.optimize import linprog

The problem data can be coded as follows.

c = np.array([40, 100])

b = np.array([7, 40, -3, 0])

A = np.array([[1, 1],

[4, 10],

[-1, 0],

[0, -1]])

Note that SciPy by default only takes minimization problems, so we call the linprog

function with arguments -c, b, and A, to solve the LO model.

result = linprog(-c, A_ub=A, b_ub=b)

Here, keywords A_ub and b_ub refer to the inequality constraints in (2.2). When the
problem has equality constraints (as in (2.4)) and variable bounds (as in (2.5)), they can
be directly added using keywords A_eq, b_eq, and bounds. We now retrieve the results
(with the opposite of the optimal value).

print(result.message)

print("Optimal value =", -result.fun)

print("[x1 x2] =", result.x)

The output is displayed below.

Optimization terminated successfully. (HiGHS Status 7: Optimal)

Optimal value = 400.0

[x1 x2] = [3. 2.8]

To summarize, compared with SciPy, the package OR-Tools allows
(i) adding constraints by directly using variable handles, without the need to write

down the matrix representation;
(ii) both minimization and maximization;

(iii) an easy change of the underlying solver.
However, SciPy can be more lightweight sometimes and connects to the solver HiGHS.
One should choose their computer tools depending on the problem and the purpose of
use. For this course, we will mostly rely on OR-Tools for simplicity.
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2.3 More Examples and Models

Example 2.2. A student aims to improve their diet. Based on a nutrition specialist recommenda-
tion, they want their daily intake to contain at least 60 g of protein, 800 mg of calcium, 75 mg of
vitamin C, and 2,000 calories. They would like to find a least expensive menu consisting of five
food types: almond butter, brown rice, orange juice, salmon, and wheat bread. The serving size,
cost per serving, and nutrition information for each food type is provided in the table below.

Food type Cost
($)

Protein
(g)

Calcium
(mg)

Vitamin C
(mg) Calories

Almond butter (100 g) 2.90 15 270 1 600
Brown rice (200 g) 3.20 5 20 0 215
Orange juice (250 g) 0.50 2 25 106 110
Salmon (150 g) 4.50 39 23 0 280
Wheat bread (25 g) 0.30 3 35 0 66

Required ingestion - 60 800 75 2,000

We define decision variables for the amount of each food type to be consumed daily, all of
which are nonnegative:

x1 ≥ 0: servings of almond butter consumed daily,
x2 ≥ 0: servings of brown rice consumed daily,
x3 ≥ 0: servings of orange juice consumed daily,
x4 ≥ 0: servings of salmon consumed daily,
x5 ≥ 0: servings of wheat bread consumed daily.

The constraints express the minimum daily requirements for protein

15x1 + 4x2 + 2x3 + 39x4 + 3x5 ≥ 60,

for calcium
270x1 + 20x2 + 25x3 + 23x4 + 35x5 ≥ 800,

for vitamin C
x1 + 106x3 ≥ 75,

and for calories
600x1 + 215x2 + 110x3 + 280x4 + 66x5 ≥ 2000.

The objective is to minimize the cost, which is a linear function of the decision variables:

min 2.9x1 + 3.2x2 + 0.5x3 + 4.5x4 + 0.3x5.

We program the model in the script model_diet.py, and get the following output.
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The cost of a least expensive diet is $9.09.

The intake amount of each food type in the diet is shown below.

Almond butter: 0.00 g

Brown rice: 0.00 g

Orange juice: 176.89 g

Salmon: 0.00 g

Wheat bread: 728.09 g

Example 2.3. An investor is considering 6 projects for potential investment for the upcoming
year. The required investment and end-of-year payout amounts are described in the following
table. Partial investment (i.e., financing only a fraction of the project instead of the whole

Project

1 2 3 4 5 6

Investment ($·1000) 10 25 35 45 50 60
Payout ($·1000) 12 30 41 55 65 77

project) is allowed for each project, with the payout proportional to the investment amount. For
example, if the investor decides to invest $5,000 in project 2, the corresponding payout will be
$30,000·($5,000/$25,000)=$6,000. There are $100,000 available for investment.

We define variables

0 ≤ xi ≤ 1: fraction of project i financed, for i = 1, . . . , 6.

The only constraint is the limit on the investment, which is

10x1 + 25x2 + 35x3 + 45x4 + 50x5 + 60x6 ≤ 100.

The objective is to maximize the total payout:

max 12x1 + 30x2 + 41x3 + 55x4 + 65x5 + 77x6.

We program the model in the script model_allocation.py, and get the following output.

The maximum payout is $129166.67.

The investment on each project is shown below.

Project 0: $0.00

Project 1: $0.00

Project 2: $0.00

Project 3: $0.00

Project 4: $50000.00

Project 5: $50000.00
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Some models are not immediately LO models, that is, there could be nonlinear
constraints or integer variables, but they can be reformulated or relaxed as LO models.

Example 2.4. A painter needs to complete a job that requires 50 gallons of brown paint and 50
gallons of gray paint. The required shades of brown and gray can be obtained my mixing the
primary colors (red, yellow, and blue) in the proportions given in the following table. The same

Color Red Yellow Blue

Brown 40% 30% 30%
Gray 30% 30% 40%

shades can be obtained by mixing secondary colors (orange, green, and purple), each of which
is based on mixing two out of three primary colors in equal proportions (red/yellow for orange,
yellow/blue for green, and red/blue for purple). The painter currently has 20 gallons each of red,
yellow, and blue paint, and 10 gallons each of orange, green, and purple paint. If needed, they
can purchase any of the primary color paints for $20 per gallon, however they would like to save
by utilizing the existing paint supplies as much as possible.

We use indices i = 1, . . . , 6, for red, yellow, blue, orange, green, and purple colors, respec-
tively, and indices j = 1, 2, for brown and gray colors, respectively. Our decision variables can
be defined as

xij ≥ 0: gallons of paint of color i used to obtain color j paint,

for i = 1, . . . , 6, j = 1, 2, and

yi ≥ 0: gallons of paint of color i purchased, i = 1, 2, 3.

The total amount of brown and gray paint made must be at least 50 gallons each:

6

∑
i=1

xij ≥ 50, j = 1, 2.

The amount of paint used should not exceed its availability

xi1 + xi2 − yi ≤ 20, i = 1, 2, 3,

xi1 + xi2 ≤ 10, i = 4, 5, 6.

To express the constraints ensuring that the mixing yields the right shade of brown, note that
only three out of six colors used for mixing contain red, and the total amount of red paint
(including that coming from orange and purple paints) used in the brown mix is

x11 + 0.5x41 + 0.5x61.
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Hence, a constraint for the proportion of red color in the brown mix can be written as follows:

x11 + 0.5x41 + 0.5x61

∑6
i=1 xi1

= 0.4.

We can multiply both sides by ∑6
i=1 xi1 and reformulate it as a linear constraint

0.6x11 − 0.4x21 − 0.4x31 + 0.1x41 − 0.4x51 + 0.1x61 = 0.

Similarly, the proportion of yellow and blue colors in the brown mix is given by:

x21 + 0.541 + 0.5x51

∑6
i=1 xi1

= 0.3 ⇐⇒ −0.3x11 + 0.7x21− 0.3x31 + 0.2x41 + 0.2x51− 0.3x61 = 0,

and

x31 + 0.5x51 + 0.5x61

∑6
i=1 xi1

= 0.3 ⇐⇒ −0.3x11− 0.3x21 + 0.7x31− 0.3x41 + 0.2x51 + 0.2x61 = 0.

The constraints describing the proportion of each of the primary colors in the gray paint mix can
be derived analogously:

0.7x12 − 0.3x22 − 0.3x32 + 0.2x42 − 0.3x52 + 0.2x62 = 0,

−0.3x12 + 0.7x22 − 0.3x32 + 0.2x42 + 0.2x52 − 0.3x62 = 0,

−0.4x12 − 0.4x22 + 0.6x32 − 0.4x42 + 0.1x52 + 0.1x62 = 0.

Finally, we aim to minimize the cost of purchasing primary color paints:

min 20
3

∑
i=1

yi.

We code the LO model in the script model_mixing.py and the output is displayed below.

The minimum paint cost is 200.00.

x11 = 15.0 x12 = 10.0

x21 = 10.0 x22 = 10.0

x31 = 15.0 x32 = 10.0

x41 = 10.0 x42 = 0.0

x51 = 0.0 x52 = 10.0

x61 = 0.0 x62 = 10.0

y1 = 5.0

y2 = 0.0

y3 = 5.0
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Example 2.5. A hospital uses a 12-hour shift schedule for its nurses, with each nurse working
either day shifts (7:00 am-7:00 pm) or night shifts (7:00 pm-7:00 am). Each nurse works 3
consecutive day shifts or 3 consecutive night shifts and then has 4 days off. The hospital is
aiming to design a schedule for day-shift nurses that minimizes the total number of nurses
employed. The minimum number of nurses required for each day shift during a week is given in
the following table:

Day of week/shift Nurses required

Monday (Mo) 16
Tuesday (Tu) 12
Wednesday (We) 18
Thursday (Th) 13
Friday (Fr) 15
Saturday (Sa) 9
Sunday (Su) 7

In addition, it is required that at least half of the day-shift nurses have weekends (Saturday and
Sunday) off.

Note that a nurse’s schedule can be defined by the first day of the three-day cycle. Thus we
define the decision variables as follows.

x1 ∈ Z≥0: number of nurses on Mo-Tu-We schedule
x2 ∈ Z≥0: number of nurses on Tu-We-Th schedule
x3 ∈ Z≥0: number of nurses on We-Th-Fr schedule
x4 ∈ Z≥0: number of nurses on Th-Fr-Sa schedule
x5 ∈ Z≥0: number of nurses on Fr-Sa-Su schedule
x6 ∈ Z≥0: number of nurses on Sa-Su-Mo schedule
x7 ∈ Z≥0: number of nurses on Su-Mo-Tu schedule

Here, x ∈ Z≥0 means that x ∈ Z and x ≥ 0. On Monday, there are x1 + x6 + x7 nurses
working, so by requirement we should have

x1 + x6 + x7 ≥ 16.
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Similarly, for the other days of the week, we have constraints

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 7.

Clearly any of these constraints imply that ∑7
i=1 xi ≥ 1. Thus the requirement that half of the

day-shift nurses have weekends off can be expressed as

x1 + x2 + x3

∑7
i=1 xi

≥ 1
2

.

As done in Example 2.4, we can multiply both sides by 2 ∑7
i=1 xi, and rewrite this constraint as

a linear one
x1 + x2 + x3 − x4 − x5 − x6 − x7 ≥ 0.

The objective is to minimize the total number of nurses ∑7
i=1 xi, so the model can be written as

min
7

∑
i=1

xi

s. t. x1 + x6 + x7 ≥ 16,

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 7,
3

∑
i=1

xi −
7

∑
i=4

xi ≥ 0,

xi ∈ Z≥0, i = 1, . . . , 7.

relax−−−−−−→

min
7

∑
i=1

xi

s. t. x1 + x6 + x7 ≥ 16,

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 7,
3

∑
i=1

xi −
7

∑
i=4

xi ≥ 0,

xi ≥ 0, i = 1, . . . , 7.

The original model (on the left) is not a LO model due to the integrality conditions on the
variables. Nevertheless, all of the constraints are affine linear and the objective function is
also linear. We can thus relax the integrality conditions and get a LO model (on the right)
by only imposing xi ≥ 0 for each i = 1, . . . , 7. This relaxed LO model is coded in the script
model_scheduling.py and returns the following result.
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The minimum number of nurses is 31.0.

x1 = 11.00

x2 = 0.00

x3 = 10.00

x4 = 3.00

x5 = 2.00

x6 = 4.00

x7 = 1.00

Note that although the integrality conditions were relaxed, the solver actually returns an integral
optimal solution to the LO model, which means that we have found an optimal solution to the
original model.

Example 2.6. A company plans the monthly trampoline production quantities, where the
demand during the next four months is

d1 = 110, d2 = 120, d3 = 130, d4 = 100.

Currently, the company has an inventory of 20 trampolines. During each month, it can
manufacture up to 100 trampolines with regular-time labor for $120 per unit. With overtime
labor, it can manufacture more trampolines, costing $150 per unit. A per unit inventory cost
of $10 is charged at the end of each month. The warehouse can fit up to 25 trampolines. The
management wants to develop a plan to minimize the total production and inventory costs. To
build the model, we denote the index set for the planning horizon as T := {1, 2, 3, 4}. The
decision variables are

xt ≥ 0: number of units made using regular-time labor during month t ∈ T,
yt ≥ 0: number of units made using overtime labor during month t ∈ T,
lt ≥ 0: inventory level at the end of month t ∈ T.

While these variables should be integers in practice, we temporarily relax the integrality condi-
tions to formulate a LO model. Note that

lt = lt−1 + (xt + yt)− dt, t ∈ T,

where l0 = 20. Here, the inventory variables can be eliminated, but they often help understand
and interpret the model. The total cost consists of three parts:

• regular-time production cost: 120 ∑4
t=1 xt,

• overtime production cost: 150 ∑4
t=1 yt,

• inventory cost: 10 ∑4
t=1 lt.

17
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Thus the model can be written as (with the parameter l0 = 20)

min 120
4

∑
t=1

xt + 150
4

∑
t=1

yt + 10
4

∑
t=1

lt

s. t. xt ≤ 100, t ∈ T,

lt = lt−1 + xt + yt − dt, t ∈ T,

lt ≤ 25, t ∈ T,

xt, yt, lt ≥ 0, t ∈ T.

We code the LO model in the script model_inventory.py and the output is displayed below.

The minimum cost is $54100.00.

The regular-time, overtime labor, and inventory level in

each period are shown below.

Period 1:

regular-time labor is 100.00

overtime labor is 0.00

inventory level is 10.00

Period 2:

regular-time labor is 100.00

overtime labor is 10.00

inventory level is 0.00

Period 3:

regular-time labor is 100.00

overtime labor is 30.00

inventory level is 0.00

Period 4:

regular-time labor is 100.00

overtime labor is -0.00

inventory level is 0.00

The obtained solution is indeed integer-valued so the solution is feasible and optimal even when
we enforce the integrality conditions on the number of trampolines.

Example 2.7. A wholesale company specializing in one product has m = 3 warehouses Wi,
i = 1, . . . , m serving n = 4 retail locations Rj, j = 1, . . . , n. Transporting one unit of the
product from Wi to Rj costs cij dollars, i = 1, . . . , m, and j = 1, . . . , n. The company has si

units of product available to ship from Wi, i = 1, . . . , m. To satisfy the demand, at least dj

units of the product must be delivered to Rj. The values of si, dj, and cij for i = 1, . . . , m and
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j = 1, . . . , n are given by

s1

s2

s3

 =

40
50
60

 ,


d1

d2

d3

d4

 =


17
33
23
47

 ,

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

 =

3 2 1 1
2 3 5 4
3 5 7 8

 .

The goal is to find out how many units of the product should be shipped from each warehouse
to each retail location so that the company’s overall transportation costs are minimized. The
decision variables are

xij ≥ 0: the product quantitiy shipped from Wi to Rj, i = 1, . . . , m, j = 1, . . . , n.

We need to make sure that the number of units shipped out of Wi does not exceed si

n

∑
j=1

xij ≤ si, i = 1, . . . , m.

To satisfy the demand at Rj, we must have

m

∑
i=1

xij ≥ dj, j = 1, . . . , n.

The objective is to minimize the total cost of transportation, so the LO model can be written as

min
m

∑
i=1

n

∑
j=1

cijxij

s. t.
n

∑
j=1

xij ≤ si, i = 1, . . . , m,

m

∑
i=1

xij ≥ dj, j = 1, . . . , n,

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

We code this LO model in the script model_transportation.py and the output is displayed
below.

The minimum shipment cost is 336.00.

The shipment plan is displayed below.

location\warehouse 1 2 3

1 0.00 0.00 17.00

2 0.00 20.00 13.00

3 23.00 0.00 0.00

4 17.00 30.00 0.00
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3 Linear Optimization II: Sets and Functions

3.1 LO Representable Functions

Sometimes even when the objective function is nonlinear, the problem can be reformu-
lated as a LO model. We call such objective functions as LO representable functions. To be
precise, we consider the following optimization model

min f (x)

s. t. Ax ≤ b,

x ∈ Rn,

(3.1)

where f (x) is a function on Rn defined by

f (x) = max
k=1,...,l

{ck0 + ck1x1 + · · ·+ cknxn}, (3.2)

for some given number of pieces l ∈ Z≥1 and coefficients cki ∈ R, k = 1, . . . , l, i =
0, 1, . . . , n. Clearly, f can be a nonlinear function. (Hint: take n + 1 points such that the
maximum at these points are not attained at the same index k = 1, . . . , l and derive a
contradiction.) Nevertheless, problem (3.1) can be rewritten as a LO model with an
additional variable y ∈ R

min y

s. t. Ax ≤ b,

y ≥ ck0 +
n

∑
i=1

ckixi, k = 1, . . . , l,

x ∈ Rn, y ∈ R.

(3.3)

To see this, note that

y ≥ f (x) ⇐⇒ y ≥ ck0 +
n

∑
i=1

ckixi, k = 1, . . . , l. (3.4)

Thus the constraints involving y ∈ R in (3.3) is equivalent to y ≥ f (x). As y is
not involved in any other constraint, an optimal solution (when it exists) must have
y = f (x). Therefore, (3.3) preserves the optimal value and any optimal solution in x
that comes from (3.1).

Using such reformulation technique on the absolute value function |x| = max{x,−x},
we can build a LO model in the following example.

Example 3.1. A machine shop has a drill press and a milling machine which are used to produce
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two parts A and B. The required time (in minutes) per unit part on each machine is shown in
the table below.

Drill press Milling machine

A 3 4
B 5 3

The shop must produce at least 50 units in total (both A and B) and at least 30 units of part A
and 20 units of B, and it can make at most 100 units of part A and 80 units of part B. Assume
that the shop can make fractional amount of the parts. The goal is to minimize the absolute
difference between the total running time of the drill press and that of the milling machine. Our
two decision variables are

30 ≤ x1 ≤ 100: units of part A to be produced,
20 ≤ x2 ≤ 80: units of part B to be produced.

The linear constraint on the total units to be produced can be written as

x1 + x2 ≥ 50.

The difference between the total running time of the drill press and that of the milling machine is

(3x1 + 5x2)− (4x1 + 3x2) = −x1 + 2x2.

To reformulate the absolute value function |−x1 + 2x2| = max{−x1 + 2x2, x1 − 2x2}, we
need to introduce an additional decision variable

y ∈ R: absolute difference between the total running times,

and two additional linear constraints

y ≥ −x1 + 2x2,

y ≥ x1 − 2x2.

In summary, our LO model can be written as

min y

s. t. y ≥ −x1 + 2x2,

y ≥ x1 − 2x2,

x1 + x2 ≥ 50,

30 ≤ x1 ≤ 100, 20 ≤ x2 ≤ 80, y ∈ R.

We code the LO model in the script model_machine.py and the output is displayed below.
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The minimum absolute difference is 0.00.

Units of part A to be produced = 40.00

Units of part B to be produced = 20.00

A natural question is how we can tell whether a nonlinear objective function f (x) is
LO representable or not. It turns out that the answer will depend on whether we are
maximizing or minimizing our objective value. As we have seen above, for a minimiza-
tion problem, any “finite-maximum” function (as defined in (3.2)) is LO representable.
Using the same argument, a “finite-minimum” function can be reformulated in a LO
maximization problem, as

y ≤ min
k=1,...,l

{ck0 + ck1x1 + · · ·+ cknxn} ⇐⇒ y ≤ ck0 +
n

∑
i=1

ckixi, k = 1, . . . , l.

One important characterization of these maximum or minimum function is by convexity
or concavity defined as follows.

Definition 3.2. A function f : Rn → R is convex if for any x, y ∈ Rn and any 0 ≤ t ≤ 1,
we have f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y). A function f is concave if − f is convex.

Geometrically, the definition says that if you take a line segment between any two
points in the graph of your function and it stays above (resp. below) the graph, then it is
convex (resp. concave). You can see simple examples in Figure 3.1. Intuitively speaking,
a convex function bends “upward” (slope increasing in any direction), and a concave
function bends “downward” (slope decreasing in any direction).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

(a) a convex function

0 0.2 0.4 0.6 0.8 1
0

1

2

3

(b) a concave function

Figure 3.1: Illustration of convexity and concavity

We claim that a maximum of linear functions is always convex. To see this, let L
be an index set and f (x) := maxk∈L{ck0 + ck1x1 + · · ·+ cknxn}. Then for any x, y ∈ Rn
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and 0 ≤ t ≤ 1, we have

f (tx + (1− t)y)

= max
k∈L
{ck0 + ck1(tx1 + (1− t)y1) + · · ·+ ckn(txn + (1− t)yn)}

= max
k∈L
{t(ck0 + ck1x1 + · · ·+ cknxn) + (1− t)(ck0 + ck1y1 + · · ·+ cknyn)}

≤ t ·max
k∈L
{ck0 + ck1x1 + · · ·+ cknxn}+ (1− t) ·max

l∈L
{cl0 + cl1y1 + · · ·+ clnyn}

= t f (x) + (1− t) f (y).

Here, the first equality is derived directly by the definition of f ; the second equality is
derived by rearranging terms (and by splitting ck0 into tck0 + (1− t)ck0); the inequality
here is due to the fact that we allow the maximum to be taken at different indices k and
l; and the last equality is again by the definition of f . By reverting the direction of the
inequality here, the argument shows that a minimum of linear functions is concave.

It is not enough by convexity or concavity alone to guarantee that the function is
LO representable. For example, if the index set is infinite (such as L = Z), then we
might need infinitely many constraints in the reformulation (3.4) (as each index could
correspond to one constraint). Thus we would also need the function to have finitely
many “pieces” for it to be LO representable. For univariate functions, this can be defined
as follows.

Definition 3.3. A univariate function f : R → R is piecewise linear (with finitely many
pieces), if there are points −∞ = a0 < a1 < · · · < al = +∞ such that on each interval
Ik := {x ∈ R : ak−1 < x < ak}, k = 1, . . . , l, f (x) is an affine linear function, i.e., there exist
bk, ck ∈ R such that

f (x) = bkx + ck, ∀ x ∈ Ik, k = 1, . . . , l.

Figure 3.2 illustrates some univariate piecewise linear functions on the interval [0, 1].
From the figures, we can see that a convex (resp. concave) piecewise linear function
must have its dashed parts (i.e., the extension of each linear piece) below (resp. above)
the function itself. In fact, the following statements are equivalent for a univariate
piecewise linear function f (x):

(i) f (x) is convex;
(ii) f (x) = maxk=1,...,l{bkx + ck};

(iii) the points and the coefficients in Definition 3.3 for f (x) satisfy

f (ak) = akbk + ck = akbk+1 + ck+1, and bk ≤ bk+1 ∀ k = 1, . . . , l − 1.

The last statement essentially says that the function f (x) is continuous and has non-
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decreasing slopes. A possible hint for any reader interested in the proof is that the
definition of convexity for f (x) implies that for any h > 0

f (x)− f (x− h)
h

≤ f (x + h)− f (x)
h

, ∀ x ∈ R.

This shows that the slope should be non-decreasing. Besides, taking limits of f from
both sides towards ak requires f to be continuous at ak, for k = 1, . . . , l − 1. Similarly,
the following statements are also equivalent for a piecewise linear function f (x):

(i) f (x) is concave;
(ii) f (x) = mink=1,...,l{bkx + ck};

(iii) the points and the coefficients in Definition 3.3 for f (x) satisfy

f (ak) = akbk + ck = akbk+1 + ck+1, and bk ≥ bk+1 ∀ k = 1, . . . , l − 1.

In practice, we may sometimes approximate a nonlinear objective function by piece-
wise linear functions. For example, given a nonlinear convex function f (x) on an
interval [0, 1], we can take points 0 = a0 < a1 < · · · < al−1 < al = 1, and then set

bk =
f (ak)− f (ak−1)

ak − ak−1
, ck = f (ak)− akbk, k = 1, . . . , l. (3.5)

An illustration is plotted in Figure 3.3a. This procedure is often called inner-approximation
(or over-approximation) of the nonlinear function f . Alternatively, if one can find differ-
ential information at points 0 ≤ a′1 < a′2 < · · · < a′l ≤ 1, then an outer-approximation (or
under-approximation) can be built as in Figure 3.3b.

Example 3.4. An electric power grid operator wants to find a generation plan for two generators
i = 1 and 2. The generation cost functions fi for generators i = 1, 2 are described by two convex
functions f1(x) = 2 + 0.5x + 0.01x2 and f2(x) = 3 + 0.4x + 0.02x2. The demand in the
region is 10 MW for the next hour. Assume that there is no loss in the transmission. The goal
is to minimize the total generation cost while meeting the demand. Let xi ≥ denote the power
generation from the generator i = 1, 2. The power demand constraint can then be written as

x1 + x2 ≥ 10.

Note that it suffices to consider generation within the range [0, 10] for both generators. To handle
the nonlinearity, we build inner-approximations for the generation cost functions f1 and f2 over
[0, 10], using (3.5) on the function values at the points x1, x2 = 0, 5, 10:

f1(x1) / max{0.55x1 + 2, 0.65x1 + 1.5}
f2(x2) / max{0.5x2 + 3, 0.7x2 + 2}.
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(a) a convex piecewise linear function

0 0.2 0.4 0.6 0.8 1
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(b) a concave piecewise linear function

0 0.2 0.4 0.6 0.8 1
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(c) neither convex nor concave

0 0.2 0.4 0.6 0.8 1
0
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(d) neither convex nor concave

Figure 3.2: Illustration of piecewise linear functions
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(a) a piecewise linear inner-approximation

0 0.2 0.4 0.6 0.8 1
0

1

2

3

(b) a piecewise linear outer-approximation

Figure 3.3: Illustration of inner- and outer-approximations of a nonlinear function
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Therefore, by introducing additional variables y1, y2 ∈ R to be the approximate generation costs
for generators i = 1, 2, we can write our approximate LO model as

min y1 + y2

s. t. x1 + x2 ≥ 10,

y1 ≥ 0.55x1 + 2,

y1 ≥ 0.65x1 + 1.5,

y2 ≥ 0.5x2 + 3,

y2 ≥ 0.7x2 + 2,

x1, x2 ≥ 0, y1, y2 ∈ R.

We code the LO model in model_generation.py and the output is displayed below.

The minimum generation cost is 10.25.

Power generation at generator 1 = 5.00.

Approximate generation cost of generator 1 = 4.75.

Power generation at generator 2 = 5.00.

Approximate generation cost of generator 2 = 5.50.

We check that at the point (x1, x2) = (5.0, 5.0), the actual generation cost ( f1(x1), f2(x2)) =

(4.75, 5.5), which agrees with the our obtained approximate generation cost (y1, y2). This means
that our approximation is tight at the obtained solution and we have found an optimal solution
exactly.

3.2 LO Feasible Regions and Graphical Solutions

Other than the objective function, one may wonder what sets can be represented as the
feasible region of a LO model. Such sets are known as polyhedra, which can be defined
as follows.

Definition 3.5. (i) A closed halfspace H in Rn is a subset

H := {x ∈ Rn : aTx ≤ b}

for some vector a ∈ Rn and real number b ∈ R.
(ii) A polyhedron (or a polyhedral set) in Rn is an intersection of finitely many closed halfs-

paces in Rn.

Recall that a general LO feasible region can be written as X := {x ∈ Rn : Ax ≤ b} for
some matrix A ∈ Rm×n and some vector b ∈ Rm. It is then clear that X is a polyhedron
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because

X =
m⋂

j=1

{
x ∈ Rn : aTj x ≤ bj

}
,

where aj is the j-th row vector of A. There could be multiple ways to represent a
polyhedron as a LO feasible region. For example, X := {x ∈ R2 : 0 ≤ x1, x2 ≤ 1}
and X′ := {x ∈ R2 : 0 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 2} are the feasible regions for two LO
problems, but they represent the sample polyhedron, which is a square of side length 1.

Similar to LO representable functions, an important characterization of LO repre-
sentable sets is convexity.

Definition 3.6. (i) A set X ⊆ Rn is convex if for any two points x, y ∈ X and any
0 ≤ t ≤ 1, the point tx + (1− t)y ∈ X.

(ii) A closed convex set in Rn is an intersection of (possibly infinitely many) closed halfspaces
in Rn.

Intuitively, a set is convex if we connect any two points in the set and the line
segment would stay in the set. See Figure 3.4 for examples. To see that we are not
abusing terminology, we show that a closed convex set is indeed convex as follows.
Suppose J is a possibly infinite index set and

X =
⋂
j∈J

{
x ∈ Rn : aTj x ≤ bj

}
is a closed convex set for vectors aj ∈ Rn and real numbers bj ∈ R, j ∈ J. Take any
points x, y ∈ X, which by definition satisfies

aTj x ≤ bj, and aTj y ≤ bj, ∀ j ∈ J.

Thus using linearity, we see that

aTj (tx + (1− t)y) = t · (aTj x) + (1− t) · (aTj y) ≤ tbj + (1− t)bj = bj.

As this holds for any j ∈ J, we conclude that tx + (1 − t)y ∈ X, which shows the
convexity of X.

Using these definitions, it is clear that a polyhedron is a closed convex set. The
converse is not necessarily true, which can be seen from a planar example in Figure 3.4b.

Now we can finally answer the question about which functions are LO representable.
For a minimization problem with decision variables x ∈ Rn and an auxiliary variable
y ∈ R, our reformulation technique (3.4) requires us to write the set {(x, y) ∈ Rn+1 : y ≥
f (x)} as a polyhedron (LO feasible region), so f (x) must be a finite-maximum function,
which is piecewise linear and convex. Similarly, for a maximization problem, our
reformulation requires us to write the set {(x, y) ∈ Rn+1 : y ≤ f (x)} as a polyhedron
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x

y

(a) Not convex

x

y

(b) Convex, not polyhedral

x
y

(c) Polyhedral

Figure 3.4: Non-example and examples of convex sets

(LO feasible region), so f (x) must be a finite-minimum function, which is piecewise
linear and concave.

By interpreting polyhedra as intersection of halfspaces can help us visualize LO
feasible regions. This is particularly useful for solving the LO problem when there are
only two variables.

Example 3.7. A company produces two types of baby carriers, non-reversible and reversible.
Each non-reversible carrier sells for $23, requires 2 linear yards of a solid color fabric, and costs
$8 to manufacture. Each reversible carrier sells for $35, requires 2 linear yards of a printed fabric
as well as 2 linear yards of a solid color fabric, and costs $10 to manufacture. The company has
900 linear yards of solid color fabrics and 600 linear yards of printed fabrics available for its new
carrier collection. It can spend up to $4,000 on manufacturing the carriers. The demand is such
that all reversible carriers made are projected to sell, whereas at most 350 non-reversible carriers
can be sold. The goal of the company is to maximize its profit (e.g., the difference of revenues and
expenses) resulting from manufacturing and selling the new carrier collection.
We define x1, x2 ≥ 0 to be the numbers of non-reversible and reversible carriers to manufacture.
Then the LO model can be written as

max 15x1 + 25x2 (profit)
s. t. x1 + x2 ≤ 450 (solid color fabric constraint)

x2 ≤ 300 (printed fabric constraint)
4x1 + 5x2 ≤ 2, 000 (budget constraint)

x1 ≤ 350 (demand constraint)
x1, x2 ≥ 0 (nonnegativity constraints).

Each constraint can be plotted on the x1-x2 plane as in Figure 3.5. Putting the constraints
together, we can find optimal solutions by moving in the improving direction of the linear
objective function z = 15x1 + 25x2, as shown in Figure 3.6. The optimal solution is (x1, x2) =

(125, 300).

Example 3.8. Now suppose in Example 6.1, the price of a non-reversible carrier is raised to $28.
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Figure 3.5: Constraints in the baby carrier problem
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Figure 3.6: Feasible region and objective of the baby carriers problem

The modified LO model becomes

max 20x1 + 25x2 (profit)
s. t. x1 + x2 ≤ 450 (solid color fabric constraint)

x2 ≤ 300 (printed fabric constraint)
4x1 + 5x2 ≤ 2, 000 (budget constraint)

x1 ≤ 350 (demand constraint)
x1, x2 ≥ 0 (nonnegativity constraints).

Note that the feasible region is the same while only the improving direction (gradient) is changed.
The modified LO model can be plotted as in Figure 3.7. Now we can see that any points
between x∗ = (125, 300) and x′ = (250, 200) are optimal and the optimal objective value is
z∗ = 10, 000.

Example 3.9. A retail store is planning an advertising campaign aiming to increase the number
of customers visiting its physical location, as well as its online store. The store manager would
like to advertise through a local magazine and through an online social network. The manager
estimates that each 1,000 dollars invested in magazine ads will attract 100 new customers to
the store, as well as 500 new website visitors. In addition, each 1,000 dollars invested in online
advertising will attract 50 new local store customers, as well as 1,000 new website visitors. The
target for this campaign is to bring at least 500 new guests to the physical store and at least
5,000 new visitors to the online store. The decision variables are
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Figure 3.7: Feasible region and objective of the modified baby carriers problem

x1 ≥ 0: budget for magazine advertising (in thousands of dollars)
x2 ≥ 0: budget for online advertising (in thousands of dollars),

and the LO model can be written as

min x1 + x2

s. t. 100x1 + 50x2 ≥ 500 (store visitors)
500x1 + 1, 000x2 ≥ 5, 000 (website visitors)

x1, x2 ≥ 0. (nonnegativity)

We can plot the feasible region in Figure 3.8 and find that (x1, x2) = (10/3, 10/3) is the
optimal solution with the optimal value z∗ = 20/3.

Instead of plotting the feasible regions manually, we can also use the matplotlib

package in Python to (approximately) plot them. For example, we code the plotting pro-
cedure for Examples 6.1 and 3.9 in the scripts plot_carriers.py and plot_advertising.py

and display the output in Figure 3.9.
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Figure 3.8: Feasible region and objective for advertising campaign problem
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Figure 3.9: Feasible regions for Examples 6.1 and 3.9
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4 Linear Optimization III: Simplex Method

4.1 Standard Form of Linear Optimization (LO)

In graphical solutions for LO problems with two variables, we can find optimal solutions
on vertices (the corner points). This observation can be more formally exploited by the
simplex method. Before we present the algorithm, it is beneficial to consider standard
forms of LO models, which have the following form.

max
n

∑
j=1

cjxj

s. t.
n

∑
j=1

aijxj = bi, i = 1, . . . , m,

x1, · · · , xn ≥ 0.

(4.1)

Namely, we only have linear equality constraints and variable nonnegativity conditions
in the standard form. Any LO formulation can be converted into the standard form by
introducing auxiliary variables when necessary. For a less-than-or-equal-to constraint,
we can use a slack variable s ≥ 0 to rewrite it as an equality constraint

n

∑
i=1

aixi ≤ b ⇐⇒ a1x1 + · · ·+ anxn + s = b, s ≥ 0. (4.2)

Similarly, for the greater-than-or-equal-to constraint, we can use an excess variable e ≥ 0
to rewrite it as an equality constraint

n

∑
i=1

aixi ≥ b ⇐⇒ a1x1 + · · ·+ anxn − e = b, e ≥ 0. (4.3)

For a nonpositive variable, we use its opposite to replace it in the decision variables

xi ≤ 0 ⇐⇒ x′i ≥ 0. (4.4)

If a variable is free (or unrestricted in sign), then we replace it with two nonnegative
auxiliary variables

xi ∈ R ⇐⇒ xi = x′i − x′′i , x′i, x′′i ≥ 0. (4.5)
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Example 4.1. The standard form of the following LO problem

max 3x1 − 5x2 + 7x3

s. t. 2x1 + 4x2 − x3 ≥ −3,
4x1 − 2x2 + 8x3 ≤ 7,
9x1 + x2 + 3x3 = 11,

x1 ∈ R,
x2 ≤ 0,
x3 ≥ 0.

is given by

max 3x′1 − 3x′′1 + 5x′2 + 7x3

s. t. 2x′1 − 2x′′1 − 4x′2 − x3 − e1 = −3,
4x′1 − 4x′′1 + 2x′2 + 8x3 + s2 = 7,
9x′1 − 9x′′1 − x′2 + 3x3 = 11,

x′1, x′′1 , x′2, x3, e1, s2 ≥ 0.

The standard form helps us to determine all variable values once we fix a subset of
them to zero. To be precise, let N denote a subset of indices {1, . . . , n} corresponding to
nonbasic variables, and B a subset of indices of basic variables, such that the values of all
basic variables can be determined through the equality constraints, once all nonbasic
variables are fixed to zero. Sometimes B is called a basis. Any solution obtained by fixing
nonbasic variables to zero is called a basic solution. The values of the basic variables in a
basic solution could be negative. If all basic variables have nonnegative values, then the
basic solution is further called a basic feasible solution.

Using linear algebra terminology, we can also say that B is an index set for basic
variables when the submatrix AB, that is formed by columns of A with indices in B, is
nonsingular. Consequently, the number of basic variables should be the same as the
number of constraints, assuming that the matrix A has full row rank. The geometric
intuition of considering basic variables is that they can represent vertices of the feasible
region. To see this, you may think about solving a system of m equations as finding the
unique intersection point of m hyperplanes when the matrix AB has full rank m.

Example 4.2. By renaming the variables in Example 4.1, we can write it as

max 3x1 − 3x2 + 5x3 + 7x4

s. t. 2x1 − 2x2 − 4x3 − x4 − x5 = −3,
4x1 − 4x2 + 2x3 + 8x4 + x6 = 7,
9x1 − 9x2 − x3 + 3x4 = 11,

x1, x2, x3, x4, x5, x6 ≥ 0.
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We can set B = {4, 5, 6} and N = {1, 2, 3}. In this case, by setting x1 = x2 = x3 = 0, the last
constraint tells us that x4 = 11/3, which then implies

x5 = 3− x4 = −2
3

,

x6 = 7− 8x4 = −67
3

.

Here, as x5, x6 < 0, we have an infeasible basic solution.

Example 4.3. Consider the following LO problem:

max 5x1 + 5x2 + 3x3

s. t. x1 + 3x2 + x3 ≤ 3,
−x1 + 3x3 ≤ 2,
2x1 − x2 + 2x3 ≤ 4,
2x1 + 3x2 − x3 ≤ 2,

x1, x2, x3 ≥ 0.

We introduce slack variables x4, x5, x6, x7 ≥ 0, the values of which can be uniquely determined
by those of x1, x2, x3 as

z = 5x1 + 5x2 + 3x3

x4 = 3 − x1 − 3x2 − x3,
x5 = 2 + x1 − 3x3,
x6 = 4 − 2x1 + x2 − 2x3,
x7 = 2 − 2x1 − 3x2 + x3.

If we set B = {4, 5, 6, 7} and N = {1, 2, 3}, then we can get a basic solution x1 = x2 = x3 = 0,
x4 = 3, x5 = 2, x6 = 4, and x7 = 2, which is feasible to the LO problem. The objective value,
which we denote as z, is 0 at this basic feasible solution (bfs).

4.2 Simplex Method and Tableau

To move from a basic feasible solution to a “better” solution, we can select a nonbasic
variable with positive “impact” on the objective value to become a basic variable.
The new basic variable is called an entering variable, as it enters the basis, while the
new nonbasic variable is called a leaving variable. We use Example 4.3 to illustrate the
procedure as follows.

Example 4.3 (continued). As both the nonbasic variables x1 and x2 have the largest coefficient
5 in the z-row, we pick x1 to be the entering variable. To be more specific, we want to increase the
value of x1 until one of the basic variables x4, x5, x6, x7 reaches 0 (and thus becomes nonbasic),
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which is then the leaving variable.
Iteration 1. We can do a ratio test based on the nonnegativity conditions:

x4 = 3 − x1 ≥ 0,
x5 = 2 + x1 ≥ 0,
x6 = 4 − 2x1 ≥ 0,
x7 = 2 − 2x1 ≥ 0.

The largest possible increase corresponds to the smallest ratio of the free coefficient to the absolute
value of the coefficient for x1 in the same row, assuming that the coefficient for x1 is negative. As
the ratios are 3, 2, 1 for variables x4, x6, x7, respectively, x7 is then the leaving variable. We see
that

x1 = 1− 3
2

x2 +
1
2

x3 −
1
2

x7.

By substituting this expression for x1 in the other rows, we obtain the following new solution:

z = 5 − 5
2 x2 + 11

2 x3 − 5
2 x7

x1 = 1 − 3
2 x2 + 1

2 x3 − 1
2 x7,

x4 = 2 − 3
2 x2 − 3

2 x3 + 1
2 x7,

x5 = 3 − 3
2 x2 − 5

2 x3 − 1
2 x7,

x6 = 2 + 4x2 − 3x3 + x7.

Here, the basic variables are indicated by B = {1, 4, 5, 6} and nonbasic variables by N =

{2, 3, 7}. Now since we still have one variable x3 with positive coefficient in the z-row, we
continue this procedure by setting it to be the entering variable.
Iteration 2. In the ratio test, we see that x6 has the smallest ratio 2

3 and thus should be the
leaving variable. Using the relation

x3 =
2
3
+

4
3

x2 −
1
3

x6 +
1
3

x7,

we get
z = 26

3 + 29
6 x2 − 2

3 x7 − 11
6 x6

x3 = 2
3 + 4

3 x2 + 1
3 x7 − 1

3 x6,
x1 = 4

3 −
5
6 x2 − 1

3 x7 − 1
6 x6,

x4 = 1 − 7
2 x2 + 1

2 x6,
x5 = 4

3 −
29
6 x2 − 4

3 x7 + 5
6 x6.

Now x2 has a positive coefficient in the z-row, so we continue the procedure.
Iteration 3. We determine the leaving variable through the ratio test and find x5 is the one
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with the smallest ratio 8
29 . By expressing x2 through x5, x6, x7, we get

z = 10 − 2x7 − x6 − x5

x2 = 8
29 −

8
29 x7 + 5

29 x6 − 6
29 x5,

x3 = 30
29 −

1
29 x7 − 3

29 x6 − 8
29 x5,

x1 = 32
29 −

3
29 x7 − 9

29 x6 + 5
29 x5,

x4 = 1
29 + 28

29 x7 − 3
29 x6 + 21

29 x5.

All coefficients in the z-row are now negative. Hence, changing the value of any nonbasic
variables will decrease the objective function value. We conclude that we have found an optimal
solution for our LO problem, which has the value

x1 =
32
29

, x2 =
8

29
, x3 =

30
29

,

and all other variables being 0. The optimal objective value is z = 10.

The above computation procedure can be done more compactly in a tableau format.
Without renaming the variables, we can also use BVk and NVk to indicate the basic
and nonbasic variables in iteration k. We use the LO model from the baby carriers
production problem as an example below.

Example 4.4. Consider the LO problem

max z = 15x1 + 25x2

s. t. x1 + x2 + s1 = 450,
x2 + s2 = 300,

4x1 + 5x2 + s3 = 2, 000,
x1 + s4 = 350,

x1, x2, s1, s2, s3, s4 ≥ 0.

We can write it in a tableau format as follows.

z x1 x2 s1 s2 s3 s4 rhs basis
1 −15 −25 0 0 0 0 0 z
0 1 1 1 0 0 0 450 s1

0 0 1 0 1 0 0 300 s2

0 4 5 0 0 1 0 2, 000 s3

0 1 0 0 0 0 1 350 s4

Here, rhs stands for right-hand side values, and the basis stands for the basic variables corre-
sponding to the rows. We use the convention that for the z-row, z is always in the basis and we
revert the sign of the objective coefficients (by moving all variables in z = 15x1 + 25x2 to the
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left-hand side). In this initial setup, the basic feasible solution (bfs) consists of basic variables
BV0 = {s1, s2, s3, s4} with values s1 = 450, s2 = 300, s3 = 2, 000, s4 = 350, and nonbasic
variables NV0 = {x1, x2} with values all being 0.
Iteration 1. To increase the value of z, we can increase the value of a nonbasic variable, which is
called a pivot variable, and the corresponding column is called a pivot column in the tableau.
As our objective function is linear, it is reasonable to select a nonbasic variable with the largest
objective coefficient to be the pivot variable, which in this case is x2. As before, we conduct a
ratio test to detect the pivot row as follows.

↓
z x1 x2 s1 s2 s3 s4 rhs basis ratio
1 −15 −25 0 0 0 0 0 z
0 1 1 1 0 0 0 450 s1 450
0 0 1 0 1 0 0 300 s2 300 ←
0 4 5 0 0 1 0 2, 000 s3 400
0 1 0 0 0 0 1 350 s4 −

Now we can perform elementary row operations involving the pivot row with the goal of turning
all pivot column entries in the non-pivot rows into 0 and the pivot row into 1. In our example,
we multiply the pivot row by 25, −1, and −5, add the results to rows 0, 1, and 3, respectively.

z x1 x2 s1 s2 s3 s4 rhs basis
1 −15 0 0 25 0 0 7, 500 z
0 1 0 1 −1 0 0 150 s1

0 0 1 0 1 0 0 300 x2

0 4 0 0 −5 1 0 500 s3

0 1 0 0 0 0 1 350 s4

After the first iteration, the bfs consists of BV1 = {s1, x2, s3, s4} with values s1 = 150,
x2 = 300, s3 = 500, s4 = 350, with NV1 = {x1, s2} with values 0. The objective value
z = 7, 500.
Iteration 2. Now the variable x1 has the largest coefficient in the objective, so we repeat the
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ratio test and find the pivot row.

↓
z x1 x2 s1 s2 s3 s4 rhs basis ratio
1 −15 0 0 25 0 0 7, 500 z
0 1 0 1 −1 0 0 150 s1 150
0 0 1 0 1 0 0 300 x2 −
0 4 0 0 −5 1 0 500 s3 125 ←
0 1 0 0 0 0 1 350 s4 350

We perform the elementary row operations and get the updated tableau as follows.

z x1 x2 s1 s2 s3 s4 rhs basis
1 0 0 0 25/4 15/4 0 9, 375 z
0 0 0 1 1/4 −1/4 0 25 s1

0 0 1 0 1 0 0 300 x2

0 1 0 0 −5/4 1/4 0 125 x1

0 0 0 0 5/4 −1/4 1 225 s4

Now the bfs consists of BV2 = {s1, x2, x1, s4} with values s1 = 25, x2 = 300, x1 = 125,
s4 = 225, and NV2 = {s2, s3} with values 0. The objective value z = 9, 375. Note that
increasing the value of any nonbasic variable would now decrease the objective value, which
can be seen from the nonnegativity of the coefficients in the z-row of the tableau. We have thus
found an optimal solution to the LO problem. From Figure 4.1, we see that the above algorithmic
procedure corresponds to moving from point (0, 0) to (0, 300), and then to (125, 300) in the
(x1, x2)-plane.

Remark. In a simplex tableau (of a LO maximization problem), the basic feasible solution
is optimal if all nonbasic variables have nonnegative coefficients in the z-row.

Recall that a LO problem can be unbounded. We would like to detect unboundedness
from the simplex tableau as described in the next example.

Example 4.5. Consider the following tableau in a LO maximization problem.

↓
z x1 x2 s1 s2 s3 s4 rhs basis
1 25 −4 0 0 0 0 90 z
0 14 −1 1 0 0 0 25 s1

0 1 0 0 1 0 0 30 s2

0 −5 −14 0 0 1 0 12 s3

0 4 −7 0 0 0 1 22 s4
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Figure 4.1: Feasible region and objective direction of Example 4.4

We see that by increasing the value of the nonbasic variable x2, the objective value should
increase. However, there is no restriction on how much x2 can increase (as no ratio test needs to
be performed). This means that this LO problem is unbounded.

Remark. In a simplex tableau (of a LO maximization problem), the unboundedness is
detected if there is a column with no positive entries.

4.3 Simplex Method Termination and Initialization

A natural question is whether simplex method can always find an optimal solution in
finitely many steps/iterations. To answer this question, we need to note a special situa-
tion called degeneracy, where there is one or more basic variables equal to 0. Degeneracy
(or degenerate bfs) may lead to the cycling phenomenon as in the next example.

Example 4.6. Consider the LO problem

max 5x1 + 4x2 − 20x3 − 2x4

s. t. 1
4 x1 − 1

8 x2 + 12x3 + 10x4 ≤ 0,

1
10 x1 + 1

20 x2 + 1
20 x3 + 1

5 x4 ≤ 0,
x1, x2, x3, x4 ≥ 0.
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The initial (iteration 0) tableau can be written as follows.

z x1 x2 x3 x4 x5 x6 rhs basis
1 −5 −4 20 2 0 0 0 z

0 1
4 −1

8 12 10 1 0 0 x5

0 1
10

1
20

1
20

1
5 0 1 0 x6

We continue the simplex method.
• Iteration 1

z x1 x2 x3 x4 x5 x6 rhs basis

1 0 −13
2 260 202 20 0 0 z

0 1 −1
2 48 40 4 0 0 x1

0 0 1
10 −19

4 −19
5 −2

5 1 0 x6

• Iteration 2
z x1 x2 x3 x4 x5 x6 rhs basis

1 0 0 −195
4 −45 −6 65 0 z

0 1 0 97
4 21 2 5 0 x1

0 0 1 −95
2 −38 −4 10 0 x2

• Iteration 3
z x1 x2 x3 x4 x5 x6 rhs basis

1 195
97 0 0 −270

97 −192
97

7280
97 0 z

0 190
97 1 0 304

97 − 8
97

1920
97 0 x2

0 4
97 0 1 84

97
8

97
20
97 0 x3

• Iteration 4
z x1 x2 x3 x4 x5 x6 rhs basis

1 15
4

135
152 0 0 −39

19
1760

19 0 z

0 −1
2 −

21
76 1 0 2

19 −100
19 0 x3

0 5
8

97
304 0 1 − 1

38
120
19 0 x4
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• Iteration 5
z x1 x2 x3 x4 x5 x6 rhs basis

1 −6 −9
2

39
2 0 0 −10 0 z

0 1
2

1
4

1
4 1 0 5 0 x4

0 −19
4 −21

8
19
2 0 1 −50 0 x5

• Iteration 6
z x1 x2 x3 x4 x5 x6 rhs basis
1 −5 −4 20 2 0 0 0 z

0 1
4 −1

8 12 10 1 0 0 x5

0 1
10

1
20

1
20

1
5 0 1 0 x6

Note that in iteration 6, we get the same tableau as we got in iteration 0. Thus if we continue
with the execution of the simplex method, we will keep repeating the calculations in iterations
0-6 and will never be able to leave the same solution.

To avoid cycling in the simplex method, we can use certain pivoting rule, which
determines the pivoting variable at every degenerate solution. A conceptually useful
rule is called Bland’s rule: assuming that the variables are indexed, for example, by
1, . . . , n, we always choose the entering or leaving variable with the smallest index. We
illustrate Bland’s rule by applying it to Example 4.6.

Example 4.6 (continued). Applying Bland’s rule leads to the same first 5 iterations, at the end
of which we have the following tableau.

z x1 x2 x3 x4 x5 x6 rhs basis

1 −6 −9
2

39
2 0 0 −10 0 z

0 1
2

1
4

1
4 1 0 5 0 x4

0 −19
4 −21

8
19
2 0 1 −50 0 x5

Now the candidates for the entering variables are x1, x2, and x6, so by Bland’s rule we choose x1

to enter the basis.
z x1 x2 x3 x4 x5 x6 rhs basis

1 0 −3
2

45
2 12 0 50 0 z

0 1 1
2

1
2 2 0 10 0 x1

0 0 −1
4

95
8

19
2 1 −5

2 0 x5
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After one more iteration, we see optimality from the tableau.

z x1 x2 x3 x4 x5 x6 rhs basis

1 3 0 24 18 0 80 0 z

0 2 1 1 4 0 20 0 x2

0 1
2 0 97

8
21
2 1 5

2 0 x5

In fact, the solution value is the same as the initial bfs, but the last tableau shows its optimality.

It can be shown that with Bland’s rule, simplex method does not have the cycling
phenomenon. The proof is a little involved, so we do not go into the details here. In
practice, Bland’s rule may not lead to efficient implementation of the simplex method.
Other pivoting rules may be more favorable, such as the steepest edge rule, the random
edge rule, or the lexicographic rule. The details can be found in [MatousekGaertner2007].

Without cycling, the simplex method is guaranteed to terminate in finitely many
iteration (with either an optimal bfs or a certificate for unboundedness). In fact, given
a standard LO form with n variables and m constraints, there are at most (n

m) possible
simplex tableaus. This is because each tableau has a unique set of basic variables, the
cardinality (i.e., size) of which is exactly m. By definition, we will not see the same basis
twice unless cycling happens.

Theorem 4.7. If the simplex method does not have cycling, then it terminates with at most (n
m)

iterations.

Another issue is regarding how to find feasible solutions to the LO problem. We
have seen that if we start with a bfs, then the simplex method can keep feasibility
through the ratio tests. Therefore, it suffices for us to discuss initialization procedures
for feasible solutions. Here, we describe two methods: the two-phase simplex method
and the big-M simplex method.

The main idea of both methods is to “relax” the constraints by introducing artificial
variables, and then try to find solutions where the artificial variables are all zero. To be
precise, for a standard form LO problem

max
n

∑
i=1

cixi

s. t.
n

∑
i=1

ajixi = bj, j = 1, . . . , m,

xi ≥ 0, i = 1, . . . , n,

(4.6)

we define the following index subsets of J := {1, . . . , m}: J+ := {j ∈ J : bj ≥ 0}, and
J− := {j ∈ J : bj < 0}, representing the constraints that have positive or no violations,
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and those that have negative violations if we set x = 0. Then the two-phase method
first solves the first-phase feasibility problem

min ∑
j∈J

uj

s. t.
n

∑
i=1

ajixi + uj = bj, ∀ j ∈ J+,

n

∑
i=1

ajixi − uj = bj, ∀ j ∈ J−,

xi ≥ 0, i = 1, . . . , n,

uj ≥ 0, j = 1, . . . , m.

(4.7)

Clearly, if we set x = 0 and uj = |bj| for j = 1, . . . , m, then (x, u) is a bfs to the
problem (4.7). Moreover, the original problem (4.6) is feasible if and only if (4.7) has an
optimal basic solution (x′, u′) where u′1, . . . , u′m are all nonbasic variables. In this case,
the objective value of (4.7) will also be 0, meaning that we do not need these artificial
variables to make the original problem (4.6) feasible. Then we can use the solution
x′ as a bfs to (4.6). In practice, if an equality constraint j in (4.6) is converted from an
inequality constraint, then we can directly take the artificial variable uj to be the slack or
excess variable. We illustrate the two-phase simplex method by the following example.

Example 4.8. Consider the following LO problem:

max 5x1 + 10x2

s. t. 2x1 + x2 = 4
x1 + 2x2 ≤ 5

x1, x2 ≥ 0.

We can convert into the standard form (by introducing the slack variable s2 ≥ 0) and then
construct the first-phase feasibility problem as

max − a1

s. t. 2x1 + x2 + a1 = 4
x1 + 2x2 + s2 = 5

x1, x2, s2, a1 ≥ 0.

We start with the bfs (x1, x2, s2, a1) = (0, 0, 5, 4) and use the simplex method as follows.
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• Iteration 0 (raw)
z x1 x2 a1 s2 rhs basis

1 0 0 1 0 0 z
0 2 1 1 0 4 a1

0 1 2 0 1 5 s2

As a basic variable, a1 should not have a nonzero coefficient in the z-row. We need to get a
correct tableau by a row operation.

• Iteration 0
z x1 x2 a1 s2 rhs basis

1 −2 −1 0 0 −4 z
0 2 1 1 0 4 a1

0 1 2 0 1 5 s2

• Iteration 1
z x1 x2 a1 s2 rhs basis

1 0 0 1 0 0 z
0 1 1/2 1/2 0 2 x1

0 0 3/2 −1/2 1 3 s2

The tableau is optimal and we can check that (x1, x2, s2) = (2, 0, 3) is a bfs of the original
problem. Thus the first-phase feasibility problem is solved.

We start the second phase as follows.
• Iteration 0 (raw)

z x1 x2 s2 rhs basis

1 -5 −10 0 0 z
0 1 1/2 0 2 x1

0 0 3/2 1 3 s2

As x1 is a basic variable, its coefficient in the z-row must be zero. We can correct this
again by a row operation.

• Iteration 0
z x1 x2 s2 rhs basis

1 0 −15/2 0 10 z
0 1 1/2 0 2 x1

0 0 3/2 1 3 s2

The entering variable is x2 and the ratio test determines that s2 should be leaving.
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• Iteration 1
z x1 x2 s2 rhs basis

1 0 0 5 25 z
0 1 0 −1/3 1 x1

0 0 1 2/3 2 x2

The tableau is optimal. We have solved the second phase problem.
From the last tableau, we can see that an optimal solution is (x∗1 , x∗2) = (1, 2), with the optimal
value z∗ = 25.

The big-M method defines a big coefficient M� 0 for the artificial variables in the
objective function. To be precise, for the problem (4.6), we pick a large constant M > 0
and solve the following problem

max
n

∑
i=1

cixi −M
m

∑
j=1

uj

s. t.
n

∑
i=1

ajixi + uj = bj, ∀ j ∈ J+,

n

∑
i=1

ajixi − uj = bj, ∀ j ∈ J−,

xi ≥ 0, i = 1, . . . , n,

uj ≥ 0, j = 1, . . . , m.

(4.8)

The subsets J+ and J− are defined similarly as in the two-phase method, so we can
choose the obvious bfs xi = 0 for i = 1, . . . , n and uj = |bj| for j = 1, . . . , m, as our
starting point. We say that M is sufficiently large, if in the simplex iterations, the sign
of any linear expression involving M would only depend on the coefficient of M. For
example, −M + 10 < 0 as M has a coefficient of −1, and 2M + 30 > M + 100 as the
coefficient of M on the left-hand side is 2, which is greater than 1, the coefficient of M
on the right-hand side. It can be shown that assuming M is sufficiently large,

• if the problem (4.8) has an optimal solution (x∗, u∗) with u∗ = 0, then x∗ is an
optimal solution to (4.6);

• if the problem (4.8) has an optimal solution (x∗, u∗) with u∗ 6= 0, (4.6) is infeasible;
• if the problem (4.8) is unbounded, then so is (4.6).

We illustrate below the big-M method on the same problem that appeared in Exam-
ple 4.8.
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Example 4.9. For the problem

max 5x1 + 10x2

s. t. 2x1 + x2 = 4
x1 + 2x2 ≤ 5

x1, x2 ≥ 0,

the big-M formulation is

max 5x1 + 10x2 −Ma1

s. t. 2x1 + x2 + a1 = 4
x1 + 2x2 + s2 = 5

x1, x2, s2, a1 ≥ 0.

• Iteration 0 (raw)
z x1 x2 a1 s2 rhs basis

1 −5 −10 M 0 0 z
0 2 1 1 0 4 a1

0 1 2 0 1 5 s2

We need to eliminate the coefficients of basic variables in the z-row through row operations.
• Iteration 0

z x1 x2 a1 s2 rhs basis

1 −5− 2M −10−M 0 0 −4M z
0 2 1 1 0 4 a1

0 1 2 0 1 5 s2

Here, x1 should be the entering variable because −5− 2M < −10−M for sufficiently
large M. By the ratio test, a1 should be leaving.

• Iteration 1
z x1 x2 a1 s2 rhs basis

1 0 −15/2 5/2 + M 0 10 z
0 1 1/2 1/2 0 2 x1

0 0 3/2 −1/2 1 3 s2

Now x2 enters and s2 leaves the basis.
• Iteration 2

z x1 x2 a1 s2 rhs basis

1 0 0 M 5 25 z
0 1 0 2/3 −1/3 1 x1

0 0 1 −1/3 2/3 2 x2
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We terminate the simplex method as all coefficients in the z-row are nonnegative.
We have found an optimal solution (x∗1 , x∗2) = (1, 2). It is feasible to the original problem
because a∗1 = 0 is nonbasic. The optimal value is z∗ = 25.

4.4 Simplex Method in the Matrix Form

It may be conceptually simpler to consider the simplex method in the following matrix
form. The standard form can be written as

max cTx

s. t. Ax = b,

x ≥ 0.

(4.9)

By using the index sets B (for basic variables) and N (for nonbasic variables), we use
the subscript notation to indicate the data associated with these variables. For example,
if B = {1, 3, 4}, then cB = (c1, c3, c4) is a vector consisting of components of the vector c
with indices in B. Thus given B and N, the standard form can be rewritten as

max [cTB , cTN]

[
xB

xN

]

s. t. [AB, AN]

[
xB

xN

]
= b,[

xB

xN

]
≥ 0.

⇐⇒
max cTB xB + cTNxN

s. t. ABxB + ANxN = b,

xB ≥ 0, xN ≥ 0.

(4.10)

Then each iteration of the simplex method can be written in the matrix form:

z = cTB A−1
B b + rTxN

xB = p + QxN
(4.11)

where p = A−1
B b, Q = [qij] = −A−1

B AN, and the vector r := cN − (cTB A−1
B AN)

T is
sometimes called the reduced cost. Recall that the definition of a basis requires the
submatrix AB to be nonsingular, which ensures that the inverse A−1

B is well-defined.
Equivalently, we can write the tableau in each iteration as

z xB xN rhs
1 0 −r cTB A−1

B b
0 I −Q p

(4.12)

where I in the tableau is the m-by-m identity matrix.
The optimality criterion for the simplex method (for a LO maximization problem)
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can be restated as r ≤ 0, and if any rk > 0, then xk should be the entering variable. The
leaving variable is determined by the ratio test, i.e., any xj such that

qjk < 0 and −
pj

qjk
= min

{
− pi

qik
: qik < 0, i = 1, . . . , m

}
. (4.13)

The unboundedness can be detected if for all i = 1, . . . , m, qik ≥ 0. Otherwise, we
set B ← B ∪ {j} \ {k} and continue. We use the data in Example 4.3 to illustrate the
procedure in the matrix form.

Example 4.10. We write the standard form of the LO problem

max 5x1 + 5x2 + 3x3

s. t. x1 + 3x2 + x3 ≤ 3,
−x1 + 3x3 ≤ 2,
2x1 − x2 + 2x3 ≤ 4,
2x1 + 3x2 − x3 ≤ 2,

x1, x2, x3 ≥ 0.

with slack variables x4, x5, x6, x7 ≥ 0 through the matrix and the vectors

A =


1 3 1 1 0 0 0
−1 0 3 0 1 0 0
2 −1 2 0 0 1 0
2 3 −1 0 0 0 1

 , b =


3
2
4
2

 , c =



5
5
3
0
0
0
0


.

Initially, we set B← B0 = {4, 5, 6, 7} and N ← N0 = {1, 2, 3}, then we have

AB =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , AN =


1 3 1
−1 0 3
2 −1 2
2 3 −1

 , cB =


0
0
0
0

 , cN =

5
5
3

 .

In particular,

p = A−1
B b =


3
2
4
2

 , Q = −A−1
B AN =


−1 −3 −1
1 0 −3
−2 1 −2
−2 −3 1

 , r = cN− (cTB A−1
B AN)

T =

5
5
3

 .
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Iteration 1. We pick x1 as an entering variable, and the ratio test determines that x7 is a
leaving variable, Thus B1 = B0 ∪ {1} \ {7} = {1, 4, 5, 6}, and consequently N1 = {2, 3, 7}.
Now setting B← B1 and N ← N1, we get

p = A−1
B b =


1
2
3
2

 , Q = −A−1
B AN =


−3

2
1
2 −1

2

−3
2 −

3
2

1
2

−3
2 −

5
2 −

1
2

4 −3 1

 , r = cN− (cTB A−1
B AN)

T =

−
5
2

11
2

−5
2

 .

Iteration 2. Now x3 is the new entering variable, and by the ratio test, x6 is leaving. Thus
B2 = B1 ∪ {3} \ {6} = {1, 3, 4, 5}, and consequently N2 = {2, 6, 7}. Now setting B ← B2

and N ← N2, we get

p = A−1
B b =


2
3
4
3

1
4
3

 , Q = −A−1
B AN =


4
3 −1

3
1
3

−5
6 −1

6 −
1
3

−7
2 +1

2 0
−29

6
5
6 −4

3

 , r = cN− (cTB A−1
B AN)

T =


29
6

−11
6

−2
3

 .

Iteration 3. The variable x2 is entering and by the ratio test x5 is leaving. Thus B3 =

B2 ∪ {2} \ {5} = {1, 2, 3, 4}, and consequently N2 = {5, 6, 7}. Now setting B ← B3 and
N ← N3, we get

p = A−1
B b =


8

29
30
29
32
29
1

29

 , Q = −A−1
B AN =


− 6

29
5
29 − 8

29

− 8
29 −

3
29 −

1
29

5
29 − 9

29 −
3
29

21
29 − 3

29
28
29

 , r = cN− (cTB A−1
B AN)

T =

−1
−1
−2

 .

As r ≤ 0, we have found an optimal solution x∗ = (32/29, 8/29, 30/29, 0, 0, 0, 0) with the
optimal value z∗ = 10.

5 Linear Optimization IV: Duality and Sensitivity

5.1 Dual Linear Optimization Formulation

We now discuss duality, which is perhaps one of the most important concepts in mathe-
matical optimization. The following example gives a motivation for our discussion.

Example 5.1. A carpenter makes tables and chairs for sale. A total of 150 board ft of oak and
250 board ft of pine are available. A table requires 16 board ft of oak and 30 board ft of pine,
while a chair requires 5 board ft of oak and 12 board ft of pine. Each table can be sold for $40,
and each chair for $15. Assuming that the tables and chairs can be produced in fractions, we can
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define x1,x2 to be the number of tables and chairs to make, respectively, and write a LO model to
maximize the revenue for the carpenter

max 40x1 + 15x2

s. t. 16x1 + 5x2 ≤ 150, (oak constraint)

30x1 + 12x2 ≤ 250, (pine constraint)

x1, x2 ≥ 0.

Now suppose the carpenter can sell any unused oak and pine to a wood company, and also buy
additional oak and pine from it at the price of y1 and y2, respectively. How should the wood
company set the prices such that the carpenter would have the same revenue as before? To answer
this question, we can formulate this as a min-max problem

min
y1,y2≥0

max
x1,x2≥0

40x1 + 15x2 + (150− 16x1 − 5x2)y1 + (250− 30x1 − 12x2)y2.

The min-max (or sometimes minimax) problem lets the wood company determine the price
first, and then let carpenter decides the production decisions, which imply the buying/selling
strategies of the oak and pine. In game theory terminology, we are trying to find the equilibrium
prices between the carpenter and the wood company. Note that the inner maximization problem
can be written as

max
x1,x2≥0

150y1 + 250y2 + (40− 15y1 − 30y2)x1 + (15− 5y1 − 12y2)x2.

If the either of the coefficients 40− 15y1 − 30y2 and 15− 5y1 − 12y2 is positive, then we can
simply increase the value of x1 or x2 to make the objective value arbitrarily large. Thus we
should have both coefficients being nonpositive. Consequently, we have an obvious solution to
the inner maximization problem x∗1 = x∗2 = 0, so the min-max problem reduces to

min 150y1 + 250y2

s. t. 15y1 + 30y2 ≥ 40, (nonpositive coefficient of x1)

5y1 + 12y2 ≥ 15, (nonpositive coefficient of x2)

y1, y2 ≥ 0.

This minimization problem is called the dual problem to the original maximization problem. We
will see below that solving the dual problem gives us prices that let the revenue of the carpenter
stays the same as before.

In general, we can formulate dual linear optimization (LO) problems based on the
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idea of relaxation. Consider a LO problem with some given m′ ≤ m and n′ ≤ n:

min
n

∑
i=1

cixi

s. t.
n

∑
i=1

ajixi ≥ bj, ∀ j = 1, . . . , m′,

n

∑
i=1

ajixi = bj, ∀ j = m′ + 1, . . . , m,

xi ≥ 0, i = 1, . . . , n′,

xi ∈ R, i = n′ + 1, . . . , n.

(5.1)

We can relax all the constraints (both equalities and inequalities) and penalize the
violation with a price vector y ∈ Rm as

min
n

∑
i=1

cixi +
m

∑
j=1

(
bj −

n

∑
i=1

ajixi

)
yj. (5.2)

The first part here is the original objective function, while the second part is given by
the penalty on any constraint violation. Since we are minimizing the objective value, we
would like to have a positive penalty (bj−∑n

i=1 ajixi)yj > 0 only when there is violation
of this constraint, i.e., ∑n

i=1 ajixi < bj for any j ≤ m′, or ∑n
i=1 ajixi 6= bj for any j ≥ m′+ 1.

Thus we should set yj to be nonnegative for each j ≤ m′ and unrestricted in sign for
j ≥ m′ + 1. Now we want to find a tightest relaxation, in the sense that the objective
value should be as close to the original objective value as possible. Naturally this leads
to maximization in the variables y1, . . . , ym. By rearranging terms in (5.2), we can write
the tightest relaxation problem as

max
y1,...,ym′≥0

ym′+1,...,ym∈R

min
x1,...,xn′≥0

xn′+1,...,xn∈R

n

∑
i=1

(
ci −

m

∑
j=1

ajiyj

)
xi +

m

∑
j=1

bjyj. (5.3)

Note that if ci −∑m
j=1 ajiyj < 0 for some i ≤ n′, then the inner minimization would be

unbounded (as we can take xi to be arbitrarily large). The same behavior happens if
ci −∑m

j=1 ajiyj 6= 0 for some i ≥ n′ + 1, because xi is not restricted in sign. Therefore, we
can impose the constraints

m

∑
j=1

ajiyj ≤ ci, i = 1, . . . , n′,

m

∑
j=1

ajiyj = ci, i = n′ + 1, . . . , n,
(5.4)
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in the outer maximization without any compromise of its optimality. Consequently, the
first summation in (5.3) vanishes and the inner minimization becomes trivial. We have
therefore derived our dual problem, i.e., finding the tightest relaxation, as

max
m

∑
j=1

bjyj

s. t.
m

∑
j=1

ajiyj ≤ ci, i = 1, . . . , n′,

m

∑
j=1

ajiyj = ci, i = n′ + 1, . . . , n,

yj ≥ 0, j = 1, . . . , m′,

yj ∈ R, j = m′ + 1, . . . , m.

(5.5)

To distinguish the problems, we also call the original problem (5.1) the primal problem.
The derivation above is known as Lagrangian duality and has been used beyond LO
problems, e.g., in some nonlinear optimization or integer optimization problems as
well. To save the effort of deriving the dual formulation from scratch each time, we
summarize the correspondence of the sign restrictions and inequality directions for LO
problems in Table 1.

Table 1: Dual correspondence of constraints and variables

Minimization Maximization
= constraint ←→ free variable
≥ constraint ←→ nonnegative variable
≤ constraint ←→ nonpositive variable
free variable ←→ = constraint

nonnegative variable ←→ ≤ constraint
nonpositive variable ←→ ≥ constraint

5.2 Weak and Strong Duality

For notational convenience, we consider matrix forms of the primal and the dual
problems:

min cTx

s. t. Ax = b,

x ≥ 0,

(P)
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and
max bTy

s. t. ATy ≤ c,

y ∈ Rm.

(D)

We can see that for any primal feasible solution x = (x1, . . . , xn) and dual feasible
solution y = (y1, . . . , ym), we have

bTy = (Ax)Ty = xT(ATy) ≤ cTx. (5.6)

Thus if the primal problem (P) admits an optimal objective value z∗ with an optimal
solution x∗, then

bTy ≤ cTx∗ = z∗, (5.7)

for any dual feasible solution y ∈ Rm, which means the dual problem (D) is bounded.
Similarly, if the dual problem (D) admits an optimal objective value w∗ with an optimal
solution y∗, then

w∗ = bTy∗ ≤ cTx, (5.8)

for any primal feasible solution x ≥ 0, which means the primal problem (P) is bounded.
In the case where both the primal and the dual problems have optimal solutions, x∗ and
y∗, respectively, we have the inequality

w∗ = bTy∗ ≤ cTx∗ = z∗. (5.9)

This is called the weak duality of LO problems. We may further extend our discussion
to some infeasible or unbounded LO problems. Recall that we can set z∗ = +∞ (resp.
z∗ = −∞) if the primal minimization problem (D) is infeasible (resp. unbounded), and
w∗ = −∞ (resp. w∗ = +∞) if the dual maximization problem (D) is infeasible (resp.
unbounded). If the primal problem is unbounded, then for any dual feasible solution y,
there exists a primal feasible solution x such that

bTy > cTx,

which contradicts with the inequality (5.9). Thus the dual problem must be infeasible,
in which case we may write z∗ = w∗ = −∞. Alternatively, if the dual problem is
unbounded, then by the same argument we must have an infeasible primal problem, in
which case we may write z∗ = w∗ = +∞. In fact, the equality z∗ = w∗ holds generally
for feasible primal and dual problems as well. This is known as the strong duality result
for LO problems.

Proposition 5.2. If the primal problem (P) has an optimal solution x∗, then the dual problem (D)
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has an optimal solution y∗ with cTx∗ = bTy∗.

Proof. By assumption, the primal problem (P) is feasible and bounded. By the simplex
method (with Bland’s pivot rule), there exists a basic feasible solution x = (xB, xN), for
some basis B ⊂ {1, . . . , n} and N := {1, . . . , n} \ B, such that xB = A−1

B b and xN = 0.
Obviously, cTx∗ = cTx as both are optimal primal solutions. Let y∗ := (cTB A−1

B )T. We
first check that y∗ is a feasible solution to the dual problem (D):

ATy∗ =

[
AT

B

AT
N

]
(cTB A−1

B )T =

[
cB

(cTB A−1
B AN)

T

]
≤
[

cB

cN

]
= c.

Here the last inequality is ensured by optimality of x, where the reduced cost vector
r = cN − (cTB A−1

B AN)
T ≥ 0 (note that it is minimization). Then bTy∗ = cTB A−1

B b =

cTB xB = cTx, which implies that y∗ is an optimal solution to the dual problem (D) by the
weak duality (5.9).

Using the symmetry between the primal and the dual problems, Proposition 5.2 tells
us both have the same optimal value as long as one of them has an optimal solution. It
remains to ask the possible outcomes of the primal and the dual problems if we know
one of them is infeasible. The next example shows that it is possible for both of the
problems to be infeasible.

Example 5.3. Let

A =

[
2 −1
−2 1

]
, b =

[
2
−3

]
, c =

[
−5
2

]
.

Then the primal problem (P) becomes

min − 5x1 + 2x2

s. t. 2x1 − x2 = 2,

− 2x1 + x2 = −3,

x1, x2 ≥ 0,

which is obviously infeasible due to the conflicting constraints. The dual problem (D) can be
written as

max 2y1 − 3y2

s. t. 2y1 − 2y2 ≤ −5,

− y1 + y2 ≤ 2,

y1, y2 ∈ R,

which is also infeasible because the second constraint implies 2y1− 2y2 ≥ −4, which contradicts
with the first constraint.
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We summarize the possible outcomes of the primal and the dual problems in the
following table, where the columns and the rows correspond to the primal and the dual
LO problem, respectively, and a 3 means possible while 7 means impossible.

Table 2: Possible outcomes of the primal and the dual LO problems

Optimal Infeasible Unbounded
Optimal 3 7 7

Infeasible 7 3 3

Unbounded 7 3 7

A very useful implication of the strong duality (Proposition 5.2) is a relation between
any primal and dual solutions, which is called complementary slackness.

Corollary 5.4. Let x denote a feasible solution to the primal problem (P) and y a feasible solution
to the dual problem (D). Then x and y are simultaneously optimal solutions to their LO problems
if and only if the following condition hold:

(c− ATy)Tx = 0.

Proof. First, suppose x and y are optimal solutions. Then by Proposition 5.2, we know
that

0 = cTx− bTy = (c− ATy)Tx.

Conversely, by the same inequality we know that cTx = bTy. Now apply the weak
duality (5.9), we know that both x and y are optimal solutions.

Corollary 5.4 tells us the followings: for an optimal primal solution x∗ and an optimal
dual solution y∗,

(i) if x∗i > 0 for some i = 1, . . . , n, then we must have ∑m
j=1 ajiy∗j = ci; or

(ii) if ∑m
j=1 ajiy∗j < ci for some i = 1, . . . , n, then x∗i = 0.

While our proof here is based on the particular format used in the primal (P) and the
dual (D) problems, it is straightforward to check that the complementary slackness
holds for any general LO forms. We may interpret it as the following simple rule:

Either a variable is at its bound zero, or the corresponding dual constraint
must hold as an equality.

We illustrate how we can use the complementary slackness to find an optimal solution
of a pair of LO problems below.
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Example 5.5. Consider the LO problem:

min 3x1 + 4x2 + 2x3

s. t. x1 + 2x2 + x3 = 5,

2x1 + 3x2 + x3 = 8,

x1, x2, x3 ≥ 0.

The dual LO problem is
max 5y1 + 8y2

s. t. y1 + 2y2 ≤ 3,

2y1 + 3y2 ≤ 4,

y1 + y2 ≤ 2,

y1, y2 ∈ R.

By the complementary slackness, we must have two out of the three constraints binding at an
optimal dual solution y∗.

(i) If the second and the third constraints are binding, then we have y(1) = (2, 0), which
gives an objective value w(1) = 5y(1)1 + 8y(1)2 = 10.

(ii) If the first and the third constraints are binding, then we have y(2) = (1, 1), but this is
not feasible as it violates the second constraint.

(iii) If the first and the second constraints are binding, then we have y(3) = (−1, 2), which
gives an objective value w(3) = 5y(3)1 + 8y(3)2 = 11.

Comparing these three possibilities, we see that y∗ = y(3) = (−1, 2), which means that x∗3 = 0
for any optimal primal solution x∗. This allows us to solve a system of equations for x∗1 and x∗2 ,
which gives us x∗ = (1, 2, 0).

Sometimes it is more efficient to solve the dual problem and use the complementary
slackness to recover the primal solution.

Example 5.6. Consider the following LO problem

max 5y1 + 8y2

s. t. y1 + 2y2 ≤ 3,

2y1 + 3y2 ≤ 4,

y1 + y2 ≤ 2,

y2 ≤ 1,

y1, y2 ∈ R.

Note that this is the maximization LO problem in Example 5.5 with one additional constraint
y2 ≤ 1. As a result, the solution y = (−1, 2) is no longer feasible for the new maximization
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problem. Nevertheless, if we write out the dual LO problem

min 3x1 + 4x2 + 2x3 + x4

s. t. x1 + 2x2 + x3 = 5,

2x1 + 3x2 + x3 + x4 = 8,

x1, x2, x3, x4 ≥ 0,

we see that the optimal solution to the minimization problem in Example 5.5 can be extended
to a basic feasible solution x = (1, 2, 0, 0) to the new minimization problem. Thus instead of
using the big-M or the two-phase simplex method on the maximization LO problem, we can use
the known solution to “warm start” our minimization problem. We convert our problem into a
maximization problem with the objective function

z = −3x1 − 4x2 − 2x3 − x4,

and write the raw tableau as follows.

z x1 x2 x3 x4 rhs basis
1 3 4 2 1 0 z
0 1 2 1 0 5 x1

0 2 3 1 1 8 x2

Through elementary row operations, the standard initial tableau should be as follows.

z x1 x2 x3 x4 rhs basis
1 0 0 1 −1 −11 z
0 1 0 −1 2 1 x1

0 0 1 1 −1 2 x2

By choosing x4 as the entering variable and x1 as the leaving variable, we get the new tableau
below.

z x1 x2 x3 x4 rhs basis
1 1/2 0 1/2 0 −21/2 z
0 1/2 0 −1/2 1 1/2 x4

0 1/2 1 1/2 0 5/2 x2

This tableau gives an optimal solution x∗ = (0, 5/2, 0, 1/2) with an optimal value z∗ = −21/2.
By the complementary slackness, we know that for an optimal dual solution y∗, the second and
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the fourth constraints must be binding:

2y∗1 + 3y∗2 = 4,

y∗2 = 1.

Then it is straightforward to see that y∗ = (1/2, 1), with the objective value w∗ = 5y∗1 + 8y∗2 =

21/2 = −z∗, which confirms that we have found an optimal solution.

The procedure in Example 5.6 is a simple illustration of what is known as the dual
simplex method. The high-level idea behind the dual simplex method is that when a LO
problem is modified, we may still be able to reuse some of the found information to
make assertions about or accelerate the solution to the modified problem. This idea
leads to sensitivity analysis, which is discussed below.

5.3 Sensitivity Analysis

We begin with the assumption that we have found an optimal solution x̄ to the primal
LO problem (P) with the basis B ⊂ {1, . . . , n}, such that the simplex tableau can be
written as

z xB xN rhs
1 0 −(cN − cTB A−1

B AN) cTB A−1
B b

0 I A−1
B AN A−1

B b

(5.10)

where N := {1, . . . , n} \ B, and r = cN − cTB A−1
B AN ≥ 0 due to the minimization in (P).

We discuss some possible changes to the problem data c, b, and A, respectively, in the
following.

Changing the objective coefficients

We consider a new objective function z = (c + d)Tx for some d ∈ Rn, which can be
partitioned into dB and dN in the same way c is. Note that the solution x̄ remains feasible
to the modified problem as no constraint is changed. The objective value associated
with the solution x̄ is changed to

(cB + dB)
TA−1

B b = cTB A−1
B b + dTB A−1

B b.

The difference here is the product of the change in the basic variable coefficient dB and
the constraint right-hand side A−1

B b. To check the optimality of the incumbent solution
x̄, we need to calculate the modified reduced cost

r′ := (cN + dN)− (cB + dB)
TA−1

B AN = r + (dN − dTB A−1
B AN).
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The difference here can be calculated by the change of objective coefficients dB and dN,
and the constraint coefficients in the tableau A−1

B AN . The solution x̄ remains optimal if
and only if r′ ≥ 0.

Changing the constraint coefficients

If any constraint coefficient associated with the basic variables AB is changed, then the
inverse A−1

B is also changed (in a nonlinear way), so that we need to recompute it to
get the coefficients for xN and the right-hand sides before we can verify feasibility or
optimality of x̄. However, if only the coefficients associated with the nonbasic variables
AN are changed, for example, to AN + DN, then x̄ remains feasible with the constraint
coefficients A−1

B AN changed to A−1
B (AN + DN). To check the optimality, note that the

reduced cost is modified to

r′ := cN − cTB A−1
B (AN + DN) = r− cTB A−1

B DN.

If we have a dual optimal solution ȳ = (cTB A−1
B )T, then the difference in the reduced

cost can be calculated more conveniently by ȳTDN.

Changing the constraint right-hand sides

Suppose the constraint right-hand side is changed from b to b + d for some vector
d ∈ Rm. Then the constraint right-hand side is changed to

A−1
B (b + d) = A−1

B b + A−1
B d.

In general, we would need to compute the inverse A−1
B to obtain the difference A−1

B d. If
the new right-hand side A−1

B (b + d) is nonnegative, then the solution x̄ remains feasible
and optimal, because the reduced cost r is unchanged. If the right-hand side A−1

B (b + d)
is no longer nonnegative, or if the inverse A−1

B is challenging to compute, while the
dual solution ȳ is available, then we can use the dual simplex method (as described in
Example 5.6) to find an optimal dual solution to the problem

max (b + d)Ty

s. t. ATy ≤ c,

y ∈ Rm,

and recover a primal optimal solution using complementary slackness. Moreover, if the
tableau associated with ȳ is known, then the change of the optimal value can be seen
from the dual problem with a changed objective coefficient vector.
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Adding a new variable or constraint

If a new variable xn+1 is added into our problem (P), then the solution (x1, . . . , xn, xn+1) =

(x̄1, . . . , x̄n, 0) is feasible. We can set B to be the same basis, while N ← N ∪ {n + 1},
so we can start our simplex method from the solution (x̄, 0). Given an+1 ∈ Rn and
cn+1 ∈ R, we can set

DN =


0 . . . 0 an+1,1
... . . . ...

...
0 · · · 0 an+1,m


and calculate the modified reduced cost by

r′ = (cN, cn+1)− cTB A−1
B DN.

The solution x̄ remains optimal if and only if r′ ≥ 0, or equivalently, cn+1 ≥ cTB A−1
B an+1.

If a new constraint is added, then the primal solution x̄ may not be feasible any more.
However, on the dual side we are basically adding a new variable to the problem (D),
so the solution (ȳ, 0) remains feasible. Thus we can start our dual simplex method as
we did in Example 5.6.

6 Overview of Mixed-integer Linear Optimization

6.1 Mixed-integer Linear Optimization and Computer Tools

Given problem data c = (c1, . . . , cn) ∈ Rn, b = (b1, . . . , bm) ∈ Rm, and

A =


a11 · · · a1n
... . . . ...

am1 · · · amn

 ∈ Rm×n,

a (mixed-)integer linear optimization (MILO) model can be defined as

min / max cTx

s. t. Ax ≤ b,

x ∈ Rn1 ×Zn2 ,

(6.1)

where n1 + n2 = n. If n = n1 and n2 = 0, then the problem (6.1) reduces to the usual
linear optimization (LO) model. If n2 = n, then we say it is a (pure) integer linear
optimization, and otherwise a mixed-integer linear optimization when n2 < n. While
integer and mixed-integer linear optimization models may have different algorithmic
aspects, we do not distinguish them in this course because we focus mainly on the
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modeling part. We see a simple example of a MILO model as follows.

Example 6.1. A company produces two types of baby carriers, non-reversible and reversible.
• Each non-reversible carrier sells for $22, requires 2 linear yards of a solid color fabric, and

costs $7 to manufacture.
• Each reversible carrier sells for $35, requires 2 linear yards of a printed fabric as well as 2

linear yards of a solid color fabric, and costs $10 to manufacture.
The company has 900 linear yards of solid color fabrics and 600 linear yards of printed fabrics
available for its new carrier collection. It can spend up to $4,000 on manufacturing the carriers.
The demand is such that all reversible carriers made are projected to sell, whereas at most 350
non-reversible carriers can be sold. The goal of the company is to maximize its profit (e.g., the
difference of revenues and expenses) resulting from manufacturing and selling the new carrier
collection.

We define x1, x2 ≥ 0 to be the numbers of non-reversible and reversible carriers to manufac-
ture. If we do not require x1, x2 to take integer values, then we have a LO model as

max 15x1 + 25x2 (profit)
s. t. x1 + x2 ≤ 450 (solid color fabric constraint)

x2 ≤ 300 (printed fabric constraint)
7x1 + 10x2 ≤ 4, 000 (budget constraint)

x1 ≤ 350 (demand constraint)
x1, x2 ≥ 0. (nonnegativity constraints).

We can use OR-Tools and GLOP to find the solution, as coded in lin_model_production.py, and
get the following result.

The maximum profit for the baby carrier production is 9642.9.

x1 = 142.86 (non-reversible carriers)

x2 = 300.00 (reversible carriers)

We can see that the solution is not integral. In fact, since the objective function consists of integer
coefficients and the optimal value here is non-integer, there does not exist an integer solution.
This example suggests that it is not always practical to relax the integrality requirements and
solve the LO model as an substitute.

We can still use the Python module OR-Tools for MILO modeling. As usual, we
import it using the following command.

from ortools.linear_solver import pywraplp

Next we declare a MILO solver SCIP instead of the LO solver GLOP that we used for LO
models.

solver = pywraplp.Solver.CreateSolver("SCIP")
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For Example 6.1, we can define our integer variables using the IntVar functions, the
argument for which is the same as the function NumVar for continuous variables.

x1 = solver.IntVar(0.0, solver.infinity(), ’x1’)

x2 = solver.IntVar(0.0, solver.infinity(), ’x2’)

To be more specific, the first argument specifies the lower bound, the second one
specifies the upper bound (where solver.infinity() gives ∞), and the last one gives
the variable a name used in model printing or exporting. After adding the variables,
each linear constraint can be added similar to what we did for LO models.

# define the solid color fabric constraint

solver.Add(x1 + x2 <= 450)

# define the printed fabric constraint

solver.Add(x2 <= 300)

# define the budget constraint

solver.Add(7*x1 + 10*x2 <= 4000)

# define the demand constraint

solver.Add(x1 <= 350)

We set linear objective function.

# create the objective of maximizing the profit

solver.Maximize(15*x1 + 25*x2)

And now we may invoke the solver.

# call the solver

status = solver.Solve()

The result (from the script int_model_production.py) is printed below.

The maximum profit for the baby carrier production is 9635.0.

x1 = 144.00 (non-reversible carriers)

x2 = 299.00 (reversible carriers)

By comparing the MILO and LO solutions in Example 6.1, we see that the MILO solution
is not just a rounded solution of the LO model. The following example further illustrates
that a rounded solution may not be feasible to the MILO problem.

Example 6.2. A hospital uses a 12-hour shift schedule for its nurses, with each nurse working
either day shifts (7:00 am-7:00 pm) or night shifts (7:00 pm-7:00 am). Each nurse works 3
consecutive day shifts or 3 consecutive night shifts and then has 4 days off. The minimum
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Table 3: Number of Required Nurses for Day Shifts

Day of week/shift Nurses required

Monday (Mo) 16
Tuesday (Tu) 12
Wednesday (We) 18
Thursday (Th) 13
Friday (Fr) 15
Saturday (Sa) 9
Sunday (Su) 8

number of nurses required for each day shift during a week is given in the following table: In
addition, it is required that at least two thirds of the day-shift nurses have weekends (Saturday
and Sunday) off. The hospital is aiming to design a schedule for day-shift nurses that minimizes
the total number of nurses employed.

To formulate a MILO model for the hospital scheduling problem, we define the decision
variables (Z≥0 means nonnegative integers) as follows.

x1 ∈ Z≥0: number of nurses on Mo-Tu-We schedule
x2 ∈ Z≥0: number of nurses on Tu-We-Th schedule
x3 ∈ Z≥0: number of nurses on We-Th-Fr schedule
x4 ∈ Z≥0: number of nurses on Th-Fr-Sa schedule
x5 ∈ Z≥0: number of nurses on Fr-Sa-Su schedule
x6 ∈ Z≥0: number of nurses on Sa-Su-Mo schedule
x7 ∈ Z≥0: number of nurses on Su-Mo-Tu schedule

On Monday, there are x1 + x6 + x7 nurses working, so by requirement we should have

x1 + x6 + x7 ≥ 16.

Similarly, for the other days of the week, we have constraints

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 8.

Clearly ∑7
i=1 xi ≥ 1. Thus the requirement that two thirds of the day-shift nurses have weekends
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off can be expressed as
x1 + x2 + x3

∑7
i=1 xi

≥ 2
3

.

This can be transformed into a linear constraint

x1 + x2 + x3 − 2x4 − 2x5 − 2x6 − 2x7 ≥ 0.

The objective is to minimize the total number of nurses ∑7
i=1 xi, so the model can be written as

min
7

∑
i=1

xi

s. t. x1 + x6 + x7 ≥ 16,

x1 + x2 + x7 ≥ 12,

x1 + x2 + x3 ≥ 18,

x2 + x3 + x4 ≥ 13,

x3 + x4 + x5 ≥ 15,

x4 + x5 + x6 ≥ 9,

x5 + x6 + x7 ≥ 8,
3

∑
i=1

xi − 2
7

∑
i=4

xi ≥ 0,

xi ∈ Z≥0, i = 1, . . . , 7.

If we relax the integrality constraints, the result (from the script lin_model_scheduling.py) is
printed below.

The minimum number of nurses is 31.3.

x1 = 10.29

x2 = 0.29

x3 = 10.29

x4 = 2.43

x5 = 2.29

x6 = 4.29

x7 = 1.43
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If we round them to a nearest integer solution x̄ = (10, 0, 10, 2, 2, 4, 1), we see that

x̄1 + x̄6 + x̄7 = 15 6≥ 16,

x̄1 + x̄2 + x̄7 = 11 6≥ 12,

x̄1 + x̄2 + x̄3 = 20 ≥ 18,

x̄2 + x̄3 + x̄4 = 12 6≥ 13,

x̄3 + x̄4 + x̄5 = 14 6≥ 15,

x̄4 + x̄5 + x̄6 = 8 6≥ 9,

x̄5 + x̄6 + x̄7 = 7 6≥ 8.

In other words, this rounded solution x̄ is infeasible. Instead, we should directly solve the
MILO model in the script int_model_scheduling.py, the result for which is printed below.

The minimum number of nurses is 32.0.

x1 = 11.00

x2 = 0.00

x3 = 11.00

x4 = 2.00

x5 = 3.00

x6 = 4.00

x7 = 1.00

One of the most important features of MILO modeling is the use of 0/1 variables
(or sometimes called binary variables). An example is the following location covering
problem.

Example 6.3. A city is planning to set up new emergency centers at different possible locations.
Due to distances and one-way streets, an emergency center at

• location 1 can cater to patients in locations 1, 2, 4, 7;
• a center at location 2 can cater to patients in locations 2, 3, 5;
• a center at location 3 can cater to patients in locations 1, 3, 6;
• a center at location 4 can cater to patients in locations 2, 3, 4, 5;
• a center at location 5 can cater to patients in locations 1, 5, 6;
• a center at location 6 can cater to patients in locations 3, 4, 6;
• a center at location 7 can cater to patients in locations 2, 3, 7.

We need to cater to patients at all locations and would like to set up the minimum number of
emergency centers.
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To model this problem, we can define our decision variables for i = 1, . . . , 7 by

xi =

1 if an emergency center is set up at location i,

0 otherwise.

To cover patients at the location 1, there are only three possible locations: 1, 3, and 5. Thus we
need

x1 + x3 + x5 ≥ 1.

Similarly, we can write the covering constraints at other locations as

x1 + x2 + x4 + x7 ≥ 1,

x2 + x3 + x4 + x6 + x7 ≥ 1,

x1 + x4 + x6 ≥ 1,

x2 + x4 + x5 ≥ 1,

x3 + x5 + x6 ≥ 1,

x1 + x7 ≥ 1.

The goal is to minimize the sum

min
7

∑
i=1

xi.

We can code this model in the script model_covering.py and get the following result.

The minimum number of emergency centers is 3.0.

x1 = 1.0

x2 = 1.0

x3 = 1.0

x4 = 0.0

x5 = 0.0

x6 = 0.0

x7 = 0.0

The following knapsack problem is a very well-known problem in integer optimization.

Example 6.4. One would like to carry different items to the camping ground in my knapsack.
They have a choice of n items. Item i produces an utility of ui for them. The volume of item i is
vi. The volume of the knapsack is V. The goal is to maximize the total utility of items put in the
knapsack.
To formulate a MILO model, we define our variables for each item i = 1, . . . , n as

xi ∈ {0, 1} : whether or not item i is chosen.
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Then the knapsack volume constraint can be written as

n

∑
i=1

vixi ≤ V.

The objective function is to maximize the total utility

max
n

∑
i=1

uixi.

6.2 Logical Constraints on 0/1 Variables

In MILO models, 0/1 variables are often used to indicate whether a certain condition
happens or not. For example, for a variable zi, we say that condition i is satisfied if
zi = 1, and zi = 0 otherwise, for some i = 1, 2, or 3. We can impose logical constraints
on these 0/1 as follows.

• “If-then” constraint: if condition 1 is satisfied, then we also need to satisfy condi-
tion 2

z2 ≥ z1, z1, z2 ∈ {0, 1}.

• Nonexclusive “either-or” constraint: either condition 1 is satisfied, or condition 2
is satisfied, and both of them can be satisfied at the same time

z1 + z2 ≥ 1, z1, z2 ∈ {0, 1}.

• Exclusive “either-or” constraint: either condition 1 is satisfied, or condition 2 is
satisfied, but they cannot be satisfied at the same time

z1 + z2 = 1, z1, z2 ∈ {0, 1}.

Sometimes we may compose our conditions with logical operations before in “if-then”
statement. The following cases are some examples on how we can do this.

• “Not” operation: to say that condition 2 is satisfied if condition 1 is not satisfied,
we can use

z2 ≥ 1− z1, z1, z2 ∈ {0, 1}.

• “And” operation: to say that condition 3 is satisfied if conditions 1 and 2 are
satisfied, we can use

z3 ≥ z1 + z2 − 1, z1, z2, z3 ∈ {0, 1}.

• “Or” operation: to say that condition 3 is satisfied if conditions 1 or 2 is satisfied,
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we can use
z3 ≥ z1, z3 ≥ z2, z1, z2, z3 ∈ {0, 1}.

• “Xor” operation: to say that condition 3 is satisfied if conditions 1 xor 2 is satisfied
(i.e., exactly one of conditions 1 and 2 is satisfied), we can use

z3 ≥ z′3, z1 + z2 + z′3 = 2z′′3 , z1, z2, z3, z′3, z′′3 ∈ {0, 1}.

Here, z′3 and z′′3 are auxiliary variables introduced to model the “xor” operation.
The following resource allocation problem is an example of the knapsack problem

with logical constraints.

Example 6.5. There are 6 projects considered for potential investment of the $100,000 budget
for the upcoming year. The required investment and end-of-year payout amounts are described
in the following table. We assume that partial investments are not allowed, that is, if a project is

Project

1 2 3 4 5 6

Investment ($·1000) 10 25 35 45 50 60
Payout ($·1000) 12 30 41 55 65 77

selected, then we must invest the full amount in it. Additionally, the following requirements
need to be satisfied.

• No more than three projects can be selected.
• If project 6 is chosen, then project 1 must also be chosen.
• Project 5 can be chosen only if project 2 is chosen.
• If project 3 is chosen, then project 4 cannot be chosen.

The objective is to maximize the total end-of-year payout from the investment.
To define our decision variables, for each project i = 1, . . . , 6, let

xi =

1, if we choose project i,

0, otherwise.

Without the additional requirements, we only have the budget constraint

10x1 + 25x2 + 35x3 + 45x4 + 50x5 + 60x6 ≤ 100.

The objective can be written as

max 12x1 + 30x2 + 41x3 + 55x4 + 65x5 + 77x6.

Each of the requirements can be written as follows.
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• No more than three projects can be selected.

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3.

• If project 6 is chosen, then project 1 must also be chosen.

x6 ≤ x1.

• Project 5 can be chosen only if project 2 is chosen.

x5 ≤ x2.

• If project 3 is chosen, then project 4 cannot be chosen.

x4 ≤ 1− x3.

We code this MILO model in model_allocation.py and use the solver SCIP to get the following
result.

The maximum payout is $119000.00.

The investment on each project is shown below.

x1: 1.0

x2: 1.0

x3: 0.0

x4: 0.0

x5: 0.0

x6: 1.0

The logical constraints can appear even when there are continuous variables, as
shown in the next example.

Example 6.6. Suppose that in Example 6.5, we now allow fractional investment but with a
minimum for each project. The updated project information is listed in the table below. To update

Project

1 2 3 4 5 6

Investment ($·1000) 10 25 35 45 50 60
Payout ($·1000) 12 30 41 55 65 77
Min. Amount ($·1000) 2 5 4 9 6 7

the model, we define the following continuous decision variables in addition to x1, . . . , x6,

yi ≥ 0 : the amount invested in the project i, i = 1, . . . , 6.
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We can impose constraints

mixi ≤ yi ≤ vixi, i = 1, . . . , 6,

where mi > 0 is the minimum investment ammount for project i, while vi is the full investment
amount. In this way, we invest in the project i if and only if xi = 1. Accordingly, the budget
constraint becomes

y1 + y2 + y3 + y4 + y5 + y6 ≤ 100.

The objective can be written as

max
12
10

y1 +
30
25

y2 +
41
35

y3 +
55
45

y4 +
65
50

y5 +
77
60

y6.

We code this MILO model in the script model_fractional_allocation.py and get the following
result.

The maximum payout is $126000.00.

The investment on each project is shown below.

x1: 0.0

y1: $0.00

x2: 1.0

y2: $5000.00

x3: 0.0

y3: $0.00

x4: 1.0

y4: $45000.00

x5: 1.0

y5: $50000.00

x6: 0.0

y6: $0.00

We see that the total payout increases compared with Example 6.5 because we have more flexible
investment options for each project. We are now investing in projects 2, 4, 5, which are different
from the projects 1, 2, 6 previously.

In Example 6.6, we are enforcing the continuous variables yi to be zero if the corre-
sponding 0/1 variable xi is zero. The modeling of such optional variable bound/linear
constraint can be done in a more general setting. For some linear constraint j = 1, . . . , m,

n

∑
i=1

ajixi ≤ bj,
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we can “switch on or off” this constraint by an additional integer variable zj ∈ {0, 1} by

n

∑
i=1

ajixi ≤ bj + Mzj,

where the parameter M is a “sufficiently large” number. Theoretically speaking, we
should choose M such that during any algorithmic step (e.g., an simplex method
iteration), the sign of any linear expression involving M only depends on the sign of
M. In practice, assuming that our problem is bounded, we may adaptively increase the
value of M by a fixed multiplicative factor each time, until our objective value does not
change any more. There are also many problems where we can naturally get a good
choice of M from the problem data, as shown in the following example.

Example 6.7. A wholesale company specializing in one product considers the possibility of
opening up to m warehouses Wi of capacity bi, for i = 1, . . . , m, to serve n retail locations Rj,
for j = 1, . . . , n. The fixed cost of opening warehouse Wi is fi. The capacity of bi means that
we can ship up to bi units of product from warehouse Wi. Transporting one unit of the product
from Wi to Rj costs cij dollars. To satisfy the demand, at least dj units of the product must be
delivered to Rj. The goal is to decide which of the m warehouses to open and how many units of
the product should be shipped from each opened warehouse to each retail location, minimizing
the overall cost for the company.
As in the usual transportation problem, we define the continuous variables for each i = 1, . . . , m
and j = 1, . . . , n

xij ≥ 0 : the product quantity shipped from Wi to Rj.

To model the fixed cost, we introduce for each i = 1, . . . , m

yi =

1, if warehouse i is open,

0, otherwise.

The objective is to minimize the total cost of transportation plus the fixed charges of opening
warehouse:

min
m

∑
i=1

n

∑
j=1

cijxij +
m

∑
i=1

fiyi.

To satisfy the demand at Rj, we can write

m

∑
i=1

xij ≥ dj, j = 1, . . . , n.

We also need to make sure that the number of units shipped out of Wi does not exceed the
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capacity:
n

∑
j=1

xij ≤ bi, i = 1, . . . , m.

In addition, if a warehouse is not opened, then no units can be shipped out of it:

if yi = 0, then xij = 0, j = 1, . . . , m.

Note that this is an optional linear constraint, and bi is a natural choice for the big-M for every
xij, j = 1, . . . , n. Thus we can write our MILO model as

min
m

∑
i=1

n

∑
j=1

cijxij +
m

∑
i=1

fiyi,

s. t.
m

∑
i=1

xij ≥ dj, j = 1, . . . , n,

n

∑
j=1

xij ≤ bi, i = 1, . . . , m,

xij ≤ biyi, i = 1, . . . , m, j = 1, . . . , n,

xij ≥ 0, yi ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n.

An important application of MILO is to model piecewise linear functions that are
not convex nor concave. For simplicity, we focus on modeling continuous piecewise
linear functions on an interval I of finite length. Recall that a function f is piecewise
linear on I := {x ∈ R : a ≤ x ≤ ā} if we can find points a = a0 < a1 < · · · < al = ā,
such that on each subinterval Ik := {x ∈ R : ak−1 < x < ak}, k = 1, . . . , l, f (x) is an
affine linear function, i.e., there exist bk, ck ∈ R such that

f (x) = bkx + ck, ∀ x ∈ Ik, k = 1, . . . , l.

The continuity assumption then translates into conditions

f (ak) = akbk + ck = akbk+1 + ck+1, ∀ k = 1, . . . , l − 1.

Suppose we would like to model the equation y = f (x), x ∈ I. We can define auxiliary
variables

zk =

1, if x lies in the interval Ik,

0, otherwise.

By definition, we should have
l

∑
k=1

zk = 1.
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Note that if x = ak for some k = 1, . . . , k− 1, then we can allow either zk = 1 or zk+1 = 1.
We need to enforce the linear constraints y = bkx + ck if zk = 1, which can be written as

y ≤ bkx + ck + M(1− zk),

y ≥ bkx + ck −M(1− zk),

for some sufficiently large M > 0, e.g., M = max{supx∈I f (x),− infx∈I f (x)}. In
practice, using this big-M model can sometimes lead to inefficiency in the solution step
(see the next section). Thus we describe an alternative way to model piecewise linear
functions.

We observe that if f is a continuous piecewise linear function, then on each subin-
terval Ik, the value y should be a convex combination of f (ak−1), f (ak) in the same
way x is a convex combination of ak−1, ak. Thus we define more auxiliary variables
0 ≤ w0, w1, . . . , wk ≤ 1 as convex combination coefficients.

• If x /∈ I1, then w0 = 0, which can be expressed as

w0 ≤ z1.

• If x /∈ Ik and x /∈ Ik+1, k ≤ l − 1, then wk = 0, which can be expressed as

wk ≤ zk + zk+1, k = 1, . . . , l − 1.

• If x /∈ Il, then wl = 0, which can be expressed as

wl ≤ zl.

Then we can write x, y as convex combinations

1 =
l

∑
k=0

wk,

x =
l

∑
k=0

wkak,

y =
l

∑
k=0

wk f (ak).

Example 6.8. A large-scale grocery retailer must purchase onions for two of their stores. Onions
can be purchased from three farms. Here are the relevant details: Store 1 requires at least 1000
units and store 2 requires at least 2000 units of onions. Farm 1 sells onions at $3 per unit and
farm 2 sells onions at $4 per unit. Farm 3 sells onions in the following fashion. The first 300
units are sold for $3 per unit, the next 400 units are sold at a discounted rate of $2.5 per unit.
However, the price goes up after that to $5, as the farm believes that there may be more demand
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than supply. For example, if 800 units are purchased from farm 3, then the cost is

$3 · 300 + $2.5 · 400 + $5 · 100 = $2400.

The transportation cost per unit from the farms to the stores are given below.

Farm 1 Farm 2 Farm 3
Store 1 $1 $1 $2
Store 2 $2 $1 $1

The goal is to determine how many units of onions to purchase from each farm such that the total
cost is minimized. For i = 1, 2, 3 and j = 1, 2, let

xij ≥ 0 : number of units of onions to purchase from farm i for store j.

Let y ∈ R denote the cost of purchase from farm 3. The store demand constraints are

x11 + x12 + x13 ≥ 1000,

x21 + x22 + x23 ≥ 2000.

The objective is to minimize the total purchase and transportation cost

min 3(x11 + x21) + 4(x12 + x22) + y

+ x11 + x12 + 2x13 + 2x21 + x22 + x23.

To model the function y = f (x13 + x23), note that

f (0) = 0, f (300) = 900, f (700) = 1900, f (3000) = 13400.

For k = 1, 2, 3, let

zk ∈ {0, 1} denote whether x13 + x23 lies in the interval Ik,

and for k = 0, 1, 2, 3, let

0 ≤ wk ≤ 1 be the kth convex combination coefficient.
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We can write the constraint y = f (x13 + x23) through the following ones:

w0 ≤ z1,

w1 ≤ z1 + z2,

w2 ≤ z2 + z3,

w3 ≤ z3,

z1 + z2 + z3 = 1,

w0 + w1 + w2 + w3 = 1,

300w1 + 700w2 + 3000w3 = x13 + x23,

900w1 + 1900w2 + 13400w3 = y.

We code the MILO model in the script model_purchase.py and use SCIP to solve it. The result
is printed below.

The minimum total cost for onion purchase is 13100.000000000004.

x11 = 1000.0000000000001

x21 = 0.0

x31 = 0.0

x12 = 0.0

x22 = 1300.0000000000002

x32 = 700.0

6.3 A Glance at MILO Solution Methods

There are two major families of solution methods in solving MILO problems: branch-
and-bound methods and cutting plane methods. Each of them deserve much more
than what we can spend in this course. Our goal here is modest: to give an idea of
how MILO problems can be solved and how the solution methods are related to the
simplex method we used for LO problems. For any MILO problem (6.1), we define its
LO relaxation as

min / max cTx

s. t. Ax ≤ b,

x ∈ Rn1+n2 .

(6.2)

6.3.1 The Branch-and-bound Methods

Given our MILO problem, suppose we found a solution x̄ to the LO relaxation.
• If x̄ ∈ Rn1 ×Zn2 , then x̄ is feasible to the MILO problem;
• otherwise there exists n1 < i ≤ n1 + n2 such that x̄i is fractional. In this case, we

need to solve the problem with either of the two constraints
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– xi ≥ dx̄ie,
– xi ≤ bx̄ic,

Note that at least one of them contains the true optimal solution to our MILO. This
branching procedure leads to a tree of LO subproblems. For example, for the LO relax-
ation of our MILO problem

LO0 : max
x∈Rn1+n2

cTx s. t. Ax ≤ b,

if we get a fractional solution x̄ such that x̄i /∈ Z, we then get two LO problems

LO1 : max
x∈Rn1+n2

cTx s. t. Ax ≤ b, xi ≥ dx̄ie,

and
LO2 : max

x∈Rn1+n2
cTx s. t. Ax ≤ b, xi ≤ bx̄ic.

Then again if we get a fractional solution x̃ to LO1, with x̃j /∈ Z, we can continue the
branching procedure and get

LO3 : max
x∈Rn1+n2

cTx s. t. Ax ≤ b, xi ≥ dx̄ie, xj ≥ dx̃je,

and
LO4 : max

x∈Rn1+n2
cTx s. t. Ax ≤ b, xi ≥ dx̄ie, xj ≤ bx̃jc.

While it seems that we may need to enumerate all possible integers for xn1+1, . . . , xn1+n2

in our feasible region, many of the LO problems in this procedure do not need any
further branching. We can prune the problem LOi if

• we find a solution x ∈ Rn1 ×Zn2 to the LO problem LOi;
• the LO problem LOi is infeasible; or
• the optimal value of LOi is worse than the best bound (the objective value of the

best solution we have found).
The pruning step, especially when we already obtained a high-quality bound, would
often greatly save our computational effort. We illustrate the branch-and-bound method
by the following simple example.

Example 6.9. Consider the MILO problem

max 5.5x1 + 2.1x2

s. t. − x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ∈ Z≥0.
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The solution of the LO relaxation is x1 = 1.3, x2 = 3.3, while the LO optimal value is z = 14.08,
which gives an upper bound on our maximization problem. We can branch on the variable x1:
x1 ≤ 1 and x2 ≥ 2.

LO0 : z = 14.08,
x1 = 1.3, x2 = 3.3

LO1 : z = 11.8,
x1 = 1, x2 = 3

x1 ≤ 1

LO2 : z = 12.05,
x1 = 2, x2 = 0.5

x1 ≥ 2

Here, the branch LO1 is pruned by integrality. From LO2 we branch on x2: x2 ≤ 0 and x2 ≥ 1.

LO0 : z = 14.08,
x1 = 1.3, x2 = 3.3

LO1 : z = 11.8,
x1 = 1, x2 = 3

x1 ≤ 1

LO2 : z = 12.05,
x1 = 2, x2 = 0.5

LO3: z = 11.6875,
x1 = 2.125, x2 = 0

x2 ≤ 0

LO4 : z = −∞
infeasible

x2 ≥ 1

x1 ≥ 2

Now the branch LO3 is pruned by bound, and the branch LO4 is pruned by infeasibility. The
optimal value of the MILO problem is thus z = 11.8 with an optimal solution x1 = 1, x2 = 3.

The numerical performance of the branch-and-bound methods will often depend on
the branching rule, i.e., which LO problem to solve next. There are numerous branching
rules and heuristics for high-quality solutions for pruning based on the structure of the
MILO problem. We remark that in each branching step, we are simply resolving the
LO problem with one additional inequality constraint. Thus we may use the current
primal-dual solution information in our simplex tableau to warm start the dual simplex
method.

6.3.2 The Cutting Plane Methods

Recall that the feasible regions of LO problems are polyhedra. If all of the vertices of the
feasible region of the LO relaxation (6.2) are integer points for the last n2 coordinates,
then the simplex method will find an optimal solution to our MILO problem (6.1). Such
polyhedra are called integral, but they are uncommon in practice. The main idea of
the cutting plane methods is to artificially add linear constraints that are valid for all
(mixed-)integer points while being able to “cut off” non-integer vertices.

As an simple illustration, we consider the following discrete (pure-integer) optimiza-
tion case (i.e., n1 = 0, n = n2). Suppose that we have found a basic optimal solution x̄
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to the standard form of the LO relaxation (6.2), where x̄i = b̄i /∈ Z for some i ∈ B. The
corresponding constraint in the tableau is

xi + ∑
j∈N

āijxj = b̄i. (6.3)

We claim that the following inequality is valid for all feasible solutions to the MILO
problem (6.1)

b̄i − bb̄ic − ∑
j∈N

(āij − bāijc)xj ≤ 0. (6.4)

To see this, note that since xj ∈ Z for each j ∈ N, we have

bb̄ic =
⌊

∑
j∈N

āijxj

⌋
≥ ∑

j∈N
bāijcxj.

By substituting (6.3) in the above inequality, we obtain the Gomory fractional cut (6.4).

Example 6.10. Consider the same MILO problem

max 5.5x1 + 2.1x2

s. t. − x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ∈ Z≥0.

We may introduce slack variables x3, x4 ∈ Z≥0 for the inequality constraints, due to the
integrality of the left-hand side coefficients and the right-hand sides.

max 5.5x1 + 2.1x2

s. t. − x1 + x2 + x3 = 2,

8x1 + 2x2 + x4 = 17,

x1, x2, x3, x4 ∈ Z≥0.

Suppose we have found the simplex tableau associated with the optimal solution x1 = 1.3, x2 =

3.3 to its LO relaxation.

z x1 x2 x3 x4 rhs basis
1 0 0 0.58 0.76 14.08 z
0 0 1 0.8 0.1 3.3 x2

0 1 0 −0.2 0.1 1.3 x1
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In particular, the second row can be written as

x2 + 0.8x3 + 0.1x4 = 3.3.

The Gomory fractional cut can be applied with i = 2, N = {3, 4}, b̄2 = 3.3, ā23 = 0.8, and
ā24 = 0.1

0.8x3 + 0.1x4 ≥ 0.3.

Since x3 = 2 + x1 − x2 and x4 = 17− 8x1 − 2x2, this yields

x2 ≤ 3.

We plot this cut in Figure 6.1.

x1

x2

x2 ≤ 3

Figure 6.1: Illustration of a Gomory fractional cut

The idea of rounding coefficients can be used to generate cuts for the mixed-integer
case, which is known as the Gomory mixed-integer cuts. Suppose that we have found
a basic feasible solution x̄ to the LO relaxation (6.2), with the corresponding row (6.3)
where i ∈ B ∩ {n1 + 1, . . . , n}. Let N1 := N ∩ {1, . . . , n1}, N2 := N ∩ {n1 + 1, . . . , n1 +

n2}, f0 := b̄i − bb̄ic, and f j := āij − bāijc, for j ∈ N.
The Gomory mixed integer cut can be written as

∑
j∈N2:
f j≤ f0

f j

f0
xj + ∑

j∈N2:
f j> f0

1− f j

1− f0
xj + ∑

j∈N1:
āij≥0

āij

f0
xj − ∑

j∈N1:
āij<0

āij

1− f0
xj ≥ 1. (6.5)

Example 6.10 (continued). Here we have f0 = 0.3, f3 = 0.8, and f4 = 0.1. Note that we do
not have any continuous variable N1 = ∅, so the formula (6.5)

∑
j∈N2:
f j≤ f0

f j

f0
xj + ∑

j∈N2:
f j> f0

1− f j

1− f0
xj ≥ 1
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then becomes
1− 0.8
1− 0.3

x3 +
0.1
0.3

x4 ≥ 1 ⇐⇒ 6x3 + 7x4 ≥ 21.

Using x3 = 2 + x1 − x2 and x4 = 17− 8x1 − 2x2, we can write the cut in terms of x1 and x2

as
5x1 + 2x2 ≤ 11.

We plot this cut in Figure 6.2. Compared with Figure 6.1, it shows that Gomory mixed-integer
cut is stronger, in the sense that it “cuts off” more non-integer points in the LO relaxation.

x1

x2

5x1 + 2x2 ≤ 11

Figure 6.2: Illustration of a Gomory mixed-integer cut

The proof of the Gomory mixed-integer cuts (6.5) consists of a sequence of mixed-
integer cuts, which are presented below.

Lemma 6.11. If x1 + ∑n
j=2 xj ≥ b, x1 ≥ 0, x2, . . . , xn ∈ Z, and f := b− bbc > 0, then

x1

f
+

n

∑
j=2

xj ≥ dbe.

Proof. Note that

f
(
dbe −

n

∑
j=2

xj

)
= f + f

(
bbc −

n

∑
j=2

xj

)
≤ f +

(
bbc −

n

∑
j=2

xj

)
= b−

n

∑
j=2

xj ≤ x1.

Divide both sides by f and we are done.

Lemma 6.12. If ∑n
j=2 xj ≤ b + x1, x1 ≥ 0, x2, . . . , xn ∈ Z, and f := b− bbc > 0, then

n

∑
j=2

xj ≤ bbc+
x1

1− f
.

Proof. Apply Lemma 6.11 with −b and −xj for j = 2, . . . , n. Note that b−bc = −dbe
and −b + b−bc = 1− f .
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Lemma 6.13. Consider ∑n
j=2 ajxj ≤ b + x1, where x1 ≥ 0 and xj ∈ Z≥0 for j = 2, . . . , n. Let

f := b− bbc and f j := aj − bajc for j = 2, . . . , n. Then

∑
j: f j≤ f
bajcxj + ∑

j: f j> f

(
bajc+

f j − f
1− f

)
xj ≤ bbc+

x1

1− f
.

Proof. Note that

∑
j: f j≤ f
bajcxj + ∑

j: f j> f
dajexj ≤ b + x1 + ∑

j: f j> f
(1− f j)xj.

The left-hand side are all integers, so we can apply Lemma 6.12 with x1 + ∑j: f j> f (1−
f j)xj ≥ 0 regarded as the continuous value.

Proposition 6.14 (Gomory mixed-integer cuts). If x ∈ R
n1
≥0 ×Z

n2
≥0 satisfies (6.3), then it

also satisfies (6.5). Moreover, the point xi = b̄i with xj = 0 for all j ∈ N does not.

Proof. Note that the equation (6.3) implies

xi + ∑
j∈N2

āijxj ≤ b̄i + ∑
j∈N1:
āij<0

−āijxj.

Now apply Lemma 6.13 and we get

xi + ∑
j∈N2:
f j≤ f

bāijcxj + ∑
j∈N2:
f j> f

(
bāijc+

f j − f0

1− f0

)
≤ bb̄ic+ ∑

j∈N1:
āij<0

−āij

1− f0
xj.

Now substitute xi using the equation (6.3) and we are done. The last claim follows from
f0 > 0.

We remark that there are many more types cuts used in MILO problems, most of
which exploits some further structure of the data A and b. Due to the limit of this course,
we refer any interested reader to the textbook [ConfortiCornuéjolsZambelli2014] for
further study.

6.4 More on Integer Modeling

Example 6.15. A salesperson wants to visit n cities. The distance between the different cities
i, j ∈ {1, . . . , n} is denoted as dij. Starting at city 1, the salesperson must visit each city exactly
once and then return to city 1 (see Figure 6.3). The goal is to minimize the total distance
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1

2

3

4

5

6

(a) a feasible travel plan

1

2

3

4

5

6

(b) an infeasible travel plan

Figure 6.3: Traveling plans of visiting 6 cities

traveled. To model this problem, we can define variables for each i 6= j, i, j ∈ {1, . . . , n}

xij =

1, if the salesperson travels from city i to city j,

0, otherwise.

The objective is to minimize the total distance

min
n

∑
i=1

∑
j 6=i

dijxij.

Note that the salesperson should arrive at and leave from each city exactly once, which can be
written as the constraints

∑
j 6=i

xij = 1, i = 1, . . . , n,

∑
i 6=j

xij = 1, j = 1, . . . , n.

The travel plan in Figure 6.3b satisfies all these constraints, but is still infeasible as we go
back to city 1 (where we started) before we visited all of the 6 cities. We call the paths such as
1→ 2→ 3→ 1 subtours, which need to be eliminated by additional constraints

∑
i∈S,j/∈S

xij ≥ 1, for all subsets S ( {1, . . . , n}, 2 ≤ |S| ≤ n− 2.

The number of the subtour elimination constraints in Example 6.15 is typically huge:
for n ≥ 4, we would have 2n − 2− 2n possible subtours, which is over 1 million for a
mere number of 20 cities! People thus often use a technique called constraint generation to
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solve this problem. The idea is to solve the problem with only a subset of the constraints
and dynamically add the rest as needed. In Example 6.15, once we get a solution x̄ij,
we can start out tour from city 1 and move to the city j such that x̄1j = 1. By repeating
the procedure, we would either visit all the cities before going back to city 1, or find a
subtour S̄. In the former case, we have successfully solved the traveling salesperson
problem, while in the latter we need to add the subtour elimination constraint for S̄ and
resolve the problem.

Example 6.16. A paper mill produces large rolls of paper of width W, which are then cut into
rolls of various smaller widths in order to meet demand. Let m be the number of different widths
that the mill produces. The mill receives an order for bi rolls of width wi for i = 1, . . . , m, where
wi ≤W. The goal is to find the smallest number of large rolls needed to meet the demand.
One way to formulate our MILO model is as follows. Suppose p is an upper bound on the
number of paper rolls, such as p = ∑m

i=1 bi. We can define our decision variables for j = 1, . . . , n
as

yj =

1, if the large roll j is used,

0, otherwise,

and for i = 1, . . . , m, j = 1, . . . , p,

zij ∈ Z≥0 : the number of rolls of width wi to be cut out of roll j.

Then our MILO model can be written as

min
p

∑
j=1

yj

s. t.
m

∑
i=1

wizij ≤Wyi, i = 1, . . . , p,

p

∑
j=1

zij ≥ bi, i = 1, . . . , m,

yj ∈ {0, 1}, j = 1, . . . , p,

zij ∈ Z≥0, i = 1, . . . , m, j = 1, . . . , p.

(6.6)

This model has some disadvantages: its LO relaxation is usually weak, and there is no easy
way to round fractional solutions from the LO relaxation into feasible integer solutions because
we have inequality constraints of both directions. Alternatively, people consider the following
formulation. Let s ∈ Zm denote a cutting pattern, where si rolls of width wi are cut out of the
large paper roll. The set of all cutting patterns is

S :=

{
s ∈ Zm

≥0 :
m

∑
i=1

wisi ≤W

}
.
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Now we can define for each s ∈ S ,

xs ∈ Z≥0 : the number of rolls cut according to the pattern s.

The only constraints are

∑
s∈S

sixs ≥ bi, i = 1, . . . , m.

Thus our alternative MILO model is

min ∑
s∈S

xs

s. t. ∑
s∈S

sixs ≥ bi, i = 1, . . . , m,

xs ∈ Z≥0, s ∈ S .

(6.7)

The number of variables |S| can be potentially large, which motivates people to use the column
generation algorithm, as outlined below. The dual of its LO relaxation is

max
m

∑
i=1

biui

s. t.
m

∑
i=1

siui ≤ 1, ∀ s ∈ S ,

u1, . . . , um ≥ 0.

(6.8)

Suppose we use a subset S ′ of S and find a primal optimal solution x̄s, s ∈ S ′ and a dual
optimal solution ū1, . . . , ūm. We can extend x̄s to all of S by setting x̄s = 0 for all s ∈ S \ S ′.
Thus when the dual solution ū is feasible, we know that x̄ is optimal by the weak duality. This is
equivalent to check that the constraints

m

∑
i=1

siūi ≤ 1

are satisfied for all s ∈ S . Or equivalently, if the following problem

max
m

∑
i=1

ūisi, s ∈ S (6.9)

has an optimal value is no more than 1, then ū is feasible. Otherwise any s ∈ S such that

∑m
i=1 ūisi > 1 can be added as a new variable S′ ← S′ ∪ {s}. The problem (6.9) is in fact a

knapsack problem (cf. Example 6.4) by the definition of S .

Example 6.17. The famous puzzle game sudoku can be formulated as an integer optimization
problem. The goal is to fill numbers {1, 2, . . . , 9} in the empty locations and the rule is that
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every number should appear only once in each row, in each column, and in each 3× 3 square.
Some numbers are provided in the beginning of the puzzle that cannot be changed. We can define

2 5 3 9 1
1 4

4 7 2 8
5 2

9 8 1
4 3

3 6 7 2
7 3

9 3 6 4
Figure 6.4: A sudoku puzzle

variables for i, j, k ∈ {1, 2, . . . , 9},

xi,j,k =

1, if the number k is selected at the location (i, j),

0, otherwise.

The constraints consist of the following. Exactly one number should be selected at each location:

9

∑
k=1

xi,j,k = 1, i, j = 1, . . . , 9.

For the given numbers, we fix the corresponding variables to 1:

xi,j,k = 1, if Sij = k.

For each row and column, every number should appear only once:

9

∑
j=1

xi,j,k = 1, i, k = 1, . . . , 9,
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and
9

∑
i=1

xi,j,k = 1, j, k = 1, . . . , 9.

For each block, every number should appear only once:

3

∑
i′′=1

3

∑
j′′=1

x3(i′−1)+i′′,3(j′−1)+j′′,k = 1, i′, j′ = 1, . . . , 3, k = 1, . . . , 9.

The objective is not needed, or we can set trivially

min 0.

We can code this model in model_sudoku.py and get the following solution to the puzzle shown
in Figure 6.4.

Found a solution to the sudoku puzzle:

2 5 8 7 3 6 9 4 1

6 1 9 8 2 4 3 5 7

4 3 7 9 1 5 2 6 8

3 9 5 2 7 1 4 8 6

7 6 2 4 9 8 1 3 5

8 4 1 6 5 3 7 2 9

1 8 4 3 6 9 5 7 2

5 7 6 1 4 2 8 9 3

9 2 3 5 8 7 6 1 4

7 Graphs and Network Optimization

7.1 Graphs and Networks

A graph G = (N, E) consists of a set of nodes N and a set of edges E, which are repre-
sented by pairs of nodes. For example, N = {1, 2, . . . , n} and E = {(1, 2), (1, 3), . . . , (1, n)}.
We remark that there could be multiple edges represented by the same pair of nodes. If
there is at most one edge between a pair of nodes, then G is called a simple graph.

Example 7.1. Here is a graph with 5 nodes.

A B

CDE
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The nodes are denoted by A, B, C, D, E, and the edges are represented by the unordered pairs
(A, B), (A, C), (A, D), (A, E), (B, C), (C, D), (D, E).

A graph is undirected if the edges have no “directions,” i.e., (i, j) is the same as (j, i)
for any i, j ∈ N. Otherwise the graph is directed and sometimes called a digraph. The
nodes and edges in directed graphs are often called vertices and arcs.

Example 7.2. Here is a directed graph with 5 vertices.

A B

CDE

The vertices are denoted by A, B, C, D, E, and the arcs are represented by the ordered pairs
(A, B), (A, C), (A, D), (A, E), (B, C), (C, D), (D, E).

An undirected graph can be viewed as a directed graphs where we have arcs with
both directions for each edge.

We say that a node j ∈ N is adjacent to i ∈ N if (i, j) ∈ E. An edge (or arc) (i, j) ∈ E
is said to be incident to nodes i, j ∈ N. When the graph is directed, we also say that it
emanates from node i and terminates at node j; it is an outgoing arc of i and incoming arc
of j. The degree of a node is the number of its incident edges. The in-degree of a vertex
is the number of its incoming arcs, and the out-degree of a vertex is the number of its
outgoing arcs.

A walk is a sequence of alternating nodes and edges

i1, e1, i2, e2, . . . , ik−1, ek, ik,

where i1, . . . , ik ∈ N and ej = (ij, ij+1) ∈ E for j = 1, . . . , k− 1. It is called closed if i1 = ik.
We also denote a walk by i1, i2, . . . , ik or e1, . . . , ek. A trail is a walk where e1, . . . , ek are
distinct. A path is a walk where i1, . . . , ik are distinct. A path is always a trail, but the
converse is not necessarily true. These definitions apply to directed graphs as well.

A circuit is a closed trail. A cycle is a circuit i1, i2, . . . , ik, i1 where i1, . . . , ik are distinct.
A graph without any cycles is called acyclic. A graph is connected if for any pair of nodes,
there is a path connecting them. A connected, acyclic graph is called a tree.

Example 7.3. In the following graph,
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Figure 7.1: Königsberg seven bridge problem

1

2

3

4

5

6

1, 2, 1 is a walk but not a trail; 3, 2, 1, 6, 5, 4, 3, 6 is a trail but not a path; 1, 2, 3, 4, 5, 6, 1 is a
circuit and a cycle. The graph is connected but not a tree.

An Eulerian trail is a trail i1, e1, i2, . . . , ik−1, ek−1, ik such that each edge ej appears only
once in the trail for j = 1, . . . , k− 1. An Eulerian circuit is an Eulerian trail that is also a
circuit. Historically, one of the first graph theory problems studied was the Eulerian
trail/circuit problem, motivated by the Königsberg seven bridge problem. It can be
formulated as the existence of an Eulerian trail/path in the following (nonsimple) graph
(Figure 7.1).

The seven bridge problem has a simple answer using the above definitions: a
connected undirected graph admits an Eulerian trail (resp. circuit) if at most two (resp.
none) of the nodes have odd degrees. This is because in an Eulerian trail, except for
the starting and ending nodes, we must arrive at and leave from each node the same
amount of times, so the degree must be even. Conversely, if none of the nodes has an
odd degree, then each time we arrive at the node, there is an edge we can use to leave
from this node. The same argument applies to Eulerian trail by connecting the two
odd-degree nodes (if there are any). Therefore, we can say that the Eulerian trail/circuit
problem is easy as we only need to count the degrees of the nodes.

The following vertex coloring problem can be much more challenging: given a graph
G = (V, E), we want to color the vertices (nodes) such that no adjacent vertices share
the same color. The minimum number of colors we need is called the chromatic number
of the graph. A heuristic method to find a vertex coloring is as follows.

(i) Start with a vertex and use color C = {1}.
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(ii) Go to a vertex i ∈ N.
(a) If there is a color c ∈ C that is not used by any adjacent node j of i, color i

with c;
(b) otherwise add a new color to c′ to C and color i with c′.

(iii) Repeat Step 2 until all vertices are colored.

Example 7.4. The following example illustrates the heuristic way of coloring the vertices.
Step 1. Used color: red

A B

CDE

Step 2. Used colors: red, green

A B

CDE

Step 3. Used color: red, green, yellow

A B

CDE

Step 4. We can color node B with the yellow color.

A B

CDE

Step 5. Used color: red, green, yellow, blue

A B

CDE
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In this way, we can color the graph with 4 colors. However, depending on the ordering of the
colors, we may be able to use fewer colors. For example, in step 4, if we color node B with the
green color, then we would get the following.

Step 4. Used color: red, green, yellow

A B

CDE

Step 5. Used color: red, green, yellow

A B

CDE

This means that we only need at most 3 colors for this graph.

The chromatic number for the graph in Example 7.4 is indeed 3. To see this, note that
the graph contains triangles, such as {A, D, E} and {A, B, C}. Each of these triangles
would require 3 different colors, as each vertex is adjacent to the other two. Therefore,
the graph would require at least 3 colors. This argument can be generalized by the
notion of cliques or complete subgraphs, meaning a subset of the vertices that are all
adjacent to each other.

We are fortunate in finding the chromatic number in Example 7.4 by the above
heuristic. In general, such heuristic can only be used for an upper bound on the chro-
matic number, which may not equal the lower bound provided by cliques. Nevertheless,
it can be used to formulate the vertex coloring problem as a integer linear optimization
as follows. Suppose we need at most c colors, which can be found by the above heuristic.
For i ∈ N and k = 1, . . . , c, let

xik =

1, if the vertex i is colored by k,

0, otherwise,

and

yk =

1, if the color k is used,

0, otherwise.
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The vertex coloring problem can be formulated as

min
c

∑
k=1

yk

s. t.
c

∑
k=1

xik = 1, i ∈ N,

xik + xjk ≤ 1, (i, j) ∈ E, k = 1, . . . , c,

xik ≤ yk, i ∈ N, k = 1, . . . , c,

xik, yk ∈ {0, 1}, i ∈ N, k = 1, . . . , c.

The first constraint ensures that we are coloring each vertex with exactly one color; the
second constraint ensures that adjacent vertices do not use the same color; the third
constraint checks if a color is used on any of the vertices. The objective function is the
number of colors used on the graph.

7.2 Network Flow Problems

A directed graph G = (N, A) can be used to represent pipelines or transportation
networks. Each arc (i, j) ∈ A is associated with a flow variable xij. At each node i ∈ N,
we have the flow balance constraint

∑
j:(j,i)∈A

xji − ∑
j:(i,j)∈A

xij = fi,

where fi is the extraction/injection of the flow at node i ∈ N.

Example 7.5. A water pipeline is built to deliver water to residential locations in a village. The
water sources are listed below

source 1 2 3
capacity 100 100 80

and the residential demands are listed below.

residence 4 5 6 7 8
demand 50 60 40 30 70

Each pipeline has its unit cost of delivering water, due to geographical differences. Below is the
water network, where circle nodes are water sources and square nodes are residential locations.
The arrows indicate the directions and the numbers indicate the unit costs for the pipelines. The
goal is to find the minimum total water delivery cost while satisfying the residential demands.

Let cij denote the cost on the arc (i, j) ∈ A, di denote the supply/demand at the node i ∈ N.
We define variables

xij ≥ 0 : water flow in the directed pipeline (i, j) ∈ A,
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1

5

8

4

6

3

2

7

5

3

4

2

3

5

6

3

3

4
3

5

7

and
yi ∈ R : water flowing out of the network at the node i ∈ N.

Note that it is possible to have both xij and xji. If yi < 0, then it means water flows into the
network at the node i ∈ N. We have the water flow balance constraint

∑
j:(j,i)∈A

xji − ∑
j:(i,j)∈A

xij = yi, ∀ i ∈ N.

At water sources, we have
di ≤ yi ≤ 0, i = 1, 2, 3.

At residential locations, we have

yi ≥ di, i = 4, 5, . . . , 8.

Then objective function is
min ∑

(i,j)∈A
cijxij.

We code this LO model in model_water_network.py and get the following results.

The minimum cost is 1120.00.

The flow in each pipeline is shown below.

x(1, 4) = 10.000000000000004

x(1, 5) = 60.0

x(5, 6) = 0.0

x(8, 5) = 0.0

x(5, 8) = 0.0

x(8, 6) = 0.0

x(3, 8) = 70.0

x(3, 6) = 9.999999999999991
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x(3, 7) = 0.0

x(6, 4) = 0.0

x(4, 6) = 0.0

x(2, 4) = 40.0

x(2, 6) = 30.000000000000007

x(2, 7) = 30.0

x(6, 7) = 0.0

If we have limits on the flows, then it may not be possible to transport any amount
from the source to the target (or sink). We only inject flow at the source s ∈ N and
extract flow at the sink t ∈ N and solve the above network flow problem. To simply the
notation, we can create an artificial arc (t, s) and

max xts

s. t. ∑
j:(j,i)∈A′

xji − ∑
j:(i,j)∈A′

xij = 0, ∀ i ∈ N,

0 ≤ xij ≤ uij, ∀ (i, j) ∈ A,

(7.1)

where A′ = A ∪ {(t, s)} and uij is the given limit for arc (i, j) ∈ A. The dual problem

min ∑
(i,j)∈A

uijyij

s. t. zt − zs ≥ 1,

zi − zj + yij ≥ 0, ∀ (i, j) ∈ A,

yij ≥ 0, ∀ (i, j) ∈ A,

(7.2)

has a nice interpretation, known as the minimum cut problem. Given a graph G = (N, A),
an s-t cut is a partition of N = S ∪ T, S ∩ T = ∅, such that s ∈ S and t ∈ T. Given the
capacity of each arc uij, the capacity of the cut S, T is the sum

∑
i∈S,j∈T,(i,j)∈A

uij.

To find a cut with minimum capacity, we can formulate it as an integer linear optimiza-
tion. For each i ∈ N, let

zi =

1 if i ∈ T,

0 if i ∈ S,
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and for each (i, j) ∈ A, let

yij =

1 if i ∈ S and j ∈ T,

0 otherwise.

Clearly we must have constraints

yij ≥ zj − zi, ∀ (i, j) ∈ A.

Since we are looking for an s-t cut, we should have

zt = 1, zs = 0 ⇐⇒ zt − zs = 1.

The objective is to minimize the sum

min ∑
(i,j)∈A

uijyij.

To summarize, the minimum cut problem can be written as

min ∑
(i,j)∈A

uijyij

s. t. yij ≥ zj − zi, ∀ (i, j) ∈ A,

zt − zs = 1,

yij ∈ {0, 1}, ∀ (i, j) ∈ A,

zi ∈ {0, 1}, ∀ i ∈ N.

(7.3)

In fact, it can be proved that the MILO problem (7.3) is equivalent to the LO prob-
lem (7.2). The main idea is that all of the minors of the constraint coefficient matrix
in (7.2) is ±1 and therefore the simplex tableau will only consist of coefficients ±1.
Hence, the basic variable values will be either 0 or 1, as the right-hand side constants.

Theorem 7.6. For any network G = (N, A), the maximum flow in (7.1) equals the minimum
cut (7.3).

The theorem is connected to the Ford-Fulkerson algorithm, that directly calculates the
maximum flow by iterative improvement on the current flows until reaching the capaci-
ties in some arcs. To be precise, we introduce two basic operations in the algorithm.

• Labeling path:
– Label the source.
– Given a labeled node i, label the node j if either

* the arc (i, j) is a forward arc: 0 ≤ xij < uij; or
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* the arc (j, i) is a backward arc: 0 < xij ≤ uij.
– Repeat the previous step until reaching the sink or no more nodes can be

labeled.
• Augmenting flow:

– Decrease the flow that would be feasible for all backward arcs:

∆b := min{xij : (i, j) is a backward arc}.

– Increase the flow that would be feasible for all forward arcs:

∆f := min{uij − xij : (i, j) is a forward arc}.

– Let ∆ := min{∆b, ∆f}. We can then improve the current solution by sending
∆ units of flow from source to sink via the augmenting path:

* increase the flow for all forward arcs in the path by ∆, and

* decrease the flow for all backward arcs in the path by ∆.

Example 7.7. We want to find the maximum flow from A to F, where the capacities are labeled
on the arcs.

A

B

C

D

E

F

1

4

1

3

2

4

3

2

2

The iterations of Ford-Fulkerson algorithm are executed as follows.
Iteration 1: Labeling path A,B,C,E,D,F

A

B

C

D

E

F

0/1

0/4

0/1

0/3

0/2

0/4

0/3

0/2

0/2

Augmenting flow ∆ = min{1, 1, 3, 3, 2} = 1
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Iteration 2: Labeling path A,C,B,D,F

A

B

C

D

E

F

1/1

0/4

1/1

1/3

0/2

0/4

1/3

0/2

1/2

Augmenting flow ∆ = min{4, 1, 4, 1} = 1
Iteration 3: Labeling path A,C,E,F

A

B

C

D

E

F

1/1

1/4

0/1

1/3

0/2

1/4

1/3

0/2

2/2

Augmenting flow ∆ = min{3, 2, 2} = 2
Iteration 4: Labeling path A,C, and no more nodes can be labeled

A

B

C

D

E

F

1/1

3/4

0/1

3/3

0/2

1/4

1/3

2/2

2/2

Terminate the algorithm. The maximum flow from A to F is 4.

To see the connection to the minimum cut problem, we construct the cut S, T when
the algorithm terminates. Let S be all the nodes that is still connected to the source
with the remaining capacities. Clearly, S does not contain the sink. All arcs from S to T
contain all the flows from the source to the sink, the sum of which equal to the capacity
of this cut. Thus by LO duality, we know that S, T is a minimum cut.
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7.3 Shortest Path Problem

Given a directed graph G = (N, A) with each arc (i, j) associated with some costs cij,
we want to find a path from a node s ∈ N to a node t ∈ N with the minimum total cost.
Here we use the term “cost” instead of just distance because the shortest path problem
can be used for modeling some general decision problems.

Example 7.8. Suppose we have purchases a new machine for $24,000 at time 0. The cost of
maintaining the machine during a year and its trade-in price are given in the table below.

Age Annual Maintenance Cost ($) Age Trade-in Price ($)
0 4,000 1 14,000
1 8,000 2 12,000
2 10,000 3 4,000
3 18,000 4 2,000
4 24,000 5 0

Assume that at any time it costs $24,000 to purchase a new machine. Our goal is to minimize
the net cost incurred during the next five years. We can model this problem using a graph.

• Our network will have six nodes corresponding to the beginning of years 1-6.
• Node i is the beginning of year i and for i < j, an arc (i, j) corresponds to purchasing a

new machine at the beginning of year i and keeping it until the beginning of year j.
• The cost on the arc (i, j) is the total net cost incurred from years i to j:

cij = maintenance cost incurred during years i, i + 1, . . . , j− 1

+ cost of purchasing a machine at the beginning of year i

− trade-in value received at the beginning of year j.

For example, (in $1,000)
c12 = 4 + 24− 14 = 14,

and
c26 = 4 + 8 + 10 + 18 + 24− 2 = 62.

The network is then plotted as follows.

1 2 3 4 5 6
14 14 14 14 14

24 24 24 24

42 42 42

62 62

88
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Then the maintenance problem reduces to finding a shortest/cheapest path from node 1 to node 6.

Any shortest path problem can be formulated as a MILO model. Define for each
(i, j) ∈ A,

xij =

1 if the arc (i, j) is selected in the path,

0 otherwise,

and for each i ∈ N \ {s, t}

yi =

1 if the node (i, j) is visited in the path,

0 otherwise.

There is one outgoing arc for the starting node

∑
j:(s,j)∈A

xsj = 1,

one incoming arc for the terminating node

∑
j:(j,t)∈A

xjt = 1,

and one incoming arc and one outgoing arc for each visited node

∑
j:(j,i)∈A

xji = yi,

∑
j:(i,j)∈A

xij = yi.

The objective is to minimize the total cost

min ∑
(i,j)∈A

cijxij.

Alternatively, we can also solve the shortest path problem efficiently through spe-
cialized algorithms.

7.3.1 Dijkstra’s Algorithm

The algorithm can be described as follows.
(i) Mark s as solved with cost 0, and all other nodes as unsolved.

(ii) For any node adjacent to the last solved node, calculate the sum of the edge cost
and the minimum cost of the last solved node, and

• if it is not a candidate, set it to be a candidate with tentative cost being the
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sum;
• otherwise, if the sum is smaller than the incumbent tentative cost, update

the tentative cost and predecessor to be the sum and the last solved node.
(iii) Pick a candidate node with the smallest tentative cost and mark it as solved.

• If the destination is solved or if there is no more candidate node, terminate
the algorithm.

• Otherwise, go back to Step 2.

Example 7.9. We want to find a shortest path from node O to node T. The cost of each edge is
marked on the graph.

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

The iterations are illustrated as follows.
Iteration 1: solved nodes (with min. cost, predecessor)

– O, (0, N/A)

candidate nodes (with tentative cost, predecessor)
– A (2, O)
– B (5, O)
– C (4, O)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 2: solved nodes
– O (0, N/A)
– A (2, O)

candidate nodes
– B (5, O)→ (4, A)
– C (4, O)
– D (9, A)
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O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 3: solved nodes
– O (0, N/A)
– A (2, O)
– B (4, A)

candidate nodes
– C (4, O)
– D (9, A)→ (8, B)
– E (7, B)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 4: solved nodes
– O (0, N/A)
– A (2, O)
– B (4, A)
– C (4, O)

candidate nodes
– D (8, B)
– E (7, B)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 5: solved nodes

101



ISEN 320 Spring 2025

– O (0, N/A)
– A (2, O)
– B (4, A)
– C (4, O)
– E (7, B)

candidate nodes
– D (8, B)
– T (14, E)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 6: solved nodes
– O (0, N/A)
– A (2, O)
– B (4, A)
– C (4, O)
– E (7, B)
– D (8, B)

candidate nodes
– T (14, E)→ (13, D)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Iteration 7: solved nodes
– O (0, N/A)
– A (2, O)
– B (4, A)
– C (4, O)
– E (7, B)
– D (8, B)
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– T (13, D)

O

A
2

B
5

2

C

4
1

D

7

4

E

3

4

1

T5

7

Terminate the algorithm as the target node is solved.

We remark that when there is negative cost on the edges/arcs, Dijkstra’s algorithm
may terminate prematurely and fail to give the correct answer. Thus we need another
algorithm to handle the more general case.

7.3.2 Bellman-Ford Algorithm

The algorithm can be described as follows.
(i) Mark the cost of s as 0, and those of other nodes as +∞.

(ii) Repeat the following step for |V| − 1 times.
• For each (i, j) ∈ A, if the current total cost of j is greater than the sum of the

current total cost of i plus the cost on the arc (i, j),
– update the cost of j to be the sum and set its predecessor to be i.

The cost we calculate in each step k is the minimum cost of node of a path from s to i
connected with at most k arcs.

Example 7.10. We want to find a cheapest path from node A to node D in the following directed
graph.

A B

C D

-2

7
6

5

-3

Iteration 0:

Node Cost Predecessor
A 0 N/A
B +∞ N/A
C +∞ N/A
D +∞ N/A

Iteration 1:
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Node Cost Predecessor
A 0 N/A
B −2 A
C 7 A
D +∞ N/A

Iteration 2:

Node Cost Predecessor
A 0 N/A
B −2 A
C 4 B
D 3 B

Iteration 3:

Node Cost Predecessor
A 0 N/A
B −2 A
C 4 B
D 1 C

We see that the minimum cost from A to D is 1, and the path is A, B, C, D. Note that the
Dijkstra’s algorithm, if applied in this case, would falsely terminate at the second iteration with
a total cost 3.

In general, the Bellman-Ford algorithm can be applied to any (directed) graph
without a negative-cost cycle. We see below an alternative explanation why we need to
execute the calculation step for |V| − 1 times.

7.4 Dynamic Programming

The shortest path problem can be reformulated on a directed acyclic graph (DAG). Let
G̃ = (Ṽ, Ã) such that

• Ṽ consists of vk for each v ∈ V and k = 1, . . . , K := |V|;
• the arcs Ã consists of

– (vk−1, vk) with cost 0 for each v ∈ V and k = 2, . . . , K,
– and (vk−1, uk) with the cost cuv for each (u, v) ∈ A and k = 2, . . . , K.

For example, for Example 7.10, the DAG can be plotted as follows.
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A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

-2

7

6

5

-3

We now want to find a path with minimum cost from s1 to tK in G̃. To do this, notice
that the vertices are now grouped into stages k = 1, . . . , K, such that arcs emanating
from stage k vertices terminate in stage k + 1. For each vertex vk in stage k = 2, . . . , K,
we can write

c(vk) = min{cuv + c(uk−1) : u ∈ V}.

This is known as the Bellman equation of dynamic programming and corresponds to exactly
what we did in the Bellman-Ford algorithm.

Dynamic programming (DP) is a very useful algorithmic framework for many
optimization problems, where

• the decisions are made in different stages t = 1, . . . , T;
• in each stage there are multiple states v ∈ Vt that contain all information impacting

our decision in that stage;
• once a decision is made, the transition into the next stage is known (u, v) ∈ At;
• the cumulative cost ft starting from stage t can be described by recursions

ft(u) = min
v∈Vt+1

{cuv + ft+1(v)}.

The Bellman equation allows us to solve many discrete optimization problems recur-
sively.

Example 7.11. A company knows that the demand for its product during each of the next four
months will be as follows:

Month Demand
1 1
2 3
3 2
4 4
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At the beginning of each month, the company must determine how many units should be
produced during the current month. During a month in which any units are produced, a setup
cost of $3 is incurred. In addition, there is a variable cost of $1 for every unit produced. At the
end of each month, a holding cost of $0.5 per unit on hand is incurred. Capacity limitations
allow a maximum of 5 units to be produced during each month. The size of the companys
warehouse restricts the ending inventory for each month to 4 units at most. The company wants
to determine a production schedule that will meet all demands on time and will minimize the
sum of production and holding costs during the four months. Assume that 0 units are on hand
at the beginning of the first month.

Here, we can index the stages by 1, 2, 3, 4 (one for each month), and the state by 0, 1, 2, 3,
4, which represents the inventory at the end of the month. The transition is given by the fact
that the inventory at the end of month t equals the inventory at the end of month t− 1 plus
the production in month t minus the demand in month t. We may use a DAG to represent the
problem, where every vertex is denoted by a stage-state pair, and an additional vertex (0, 0) is
added to denote the initial inventory at hand.

0, 0

1, 0

1, 1

1, 2

1, 3

1, 4

2, 0

2, 1

2, 2

2, 3

2, 4

3, 0

3, 1

3, 2

3, 3

3, 4

4, 0

4, 1

4, 2

4, 3

4, 4

To solve the problem through DP recursion (Bellman equation), note that

f (4, 0) = · · · = f (4, 4) = 0,

and
f (3, 1) = min

p=3,4,5
{ f (4, 1 + p− 4) + 3 · 1(p > 0) + p + 0.5},
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because the demand in month 4 is 4. Similarly, this gives us

f (3, 0) = min{3 + 4, 3 + 5} = 7, with p = 4,

f (3, 1) = min{3 + 3 + 0.5, 3 + 4 + 0.5, 3 + 5 + 0.5} = 6.5, with p = 3,

f (3, 2) = min{3 + 2 + 1, . . . , 3 + 5 + 1} = 6, with p = 2,

f (3, 3) = min{3 + 1 + 1.5, . . . , 3 + 5 + 1.5} = 5.5, with p = 1,

f (3, 4) = min{2, 3 + 1 + 2, . . . , 3 + 4 + 2} = 2, with p = 0.

We can now calculate f (2, i) for i = 0, 1, . . . , 4 by

f (2, i) = min
p≤5
{ f (3, i + p− 2) + 3 · 1(p > 0) + p + 0.5i : 0 ≤ i + p− 2 ≤ 4}.

Plugging in the values, we get

f (2, 0) = min{7 + 3 + 2, 6.5 + 3 + 3, . . . , 5.5 + 3 + 5} = 12, with p = 2,

f (2, 1) = min{7 + 3 + 1 + 0.5, . . . , 5.5 + 3 + 4 + 0.5, 2 + 3 + 5 + 0.5} = 10.5, with p = 5,

f (2, 2) = min{7 + 1, . . . , 5.5 + 3 + 3 + 1, 2 + 3 + 4 + 1} = 8, with p = 0,

f (2, 3) = min{6.5 + 1.5, 6 + 3 + 1 + 1.5, . . . , 2 + 3 + 3 + 1.5} = 8, with p = 0,

f (2, 4) = min{6 + 2, 5.5 + 3 + 1 + 2, 2 + 3 + 2 + 2} = 8, with p = 0.

Then, we can now calculate f (1, i) for i = 0, 1, . . . , 4 by

f (1, i) = min
p≤5
{ f (2, i + p− 3) + 3 · 1(p > 0) + p + 0.5i : 0 ≤ i + p− 3 ≤ 4}.

Plugging in the values, we get

f (1, 0) = min{18, 17.5, 16} = 16, with p = 5,

f (1, 1) = min{17.5, 17, 15.5, 16.5} = 16.5, with p = 4,

f (1, 2) = min{17, 16.5, 15, 16, 17} = 15, with p = 3,

f (1, 3) = min{13.5, 16, 14.5, 15.5, 16.5} = 13.5, with p = 0,

f (1, 4) = min{12.5, 14, 15, 16} = 12.5, with p = 0,

We can finally calculate f (0, 0) by

f (0, 0) = min
p≤5
{ f (1, p− 1) + 3 · 1(p > 0) + p : 0 ≤ p− 1 ≤ 4}.
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This gives us

f (0, 0) = min{20, 21.5, 21, 20.5, 20.5} = 20, with p = 1.

Retrieving the solutions, we should produce 1 unit in month 1, 5 units in month 2, 0 units in
month 3, and 4 units in month 4. The total cost is $20.

Sometimes DP can be applied to problems that do not have a clear stage structure.
We illustrate this by the following example of a knapsack problem that has been introduced
in MILO model and the cutting stock problem in the column generation step.

Example 7.12. Suppose we would like to fill a knapsack with capacity of 10 kilograms. The
items of each type are listed below with their values.

Type Weight (kg) Value ($)
1 4 11
2 3 7
3 5 12

The goal is to maximize the total value of the items in the knapsack.
Here, we can set the stages to be t = 1, 2, 3, representing the items of types t, t + 1, . . . , 3 to

be filled. Then the state in each stage is denoted by x, the remaining capacity in the knapsack.
Since we are maximizing the total value, we define our value function in stage t as ft(x), which
is the maximum value that can be filled in the knapsack with items t, t + 1, . . . , 3. We have the
recursion

ft(x) = max
y
{vt · y + ft+1(x− wt · y) : x− wt · y ≥ 0},

where vt, wt are the value and the weight of item t.
In stage 3, clearly we have

f3(10) = 24, with y∗3 = 2,

f3(x) = 12, for 5 ≤ x ≤ 9, with y∗3 = 1,

f3(x) = 0, for 0 ≤ x ≤ 4, with y∗3 = 0.
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In stage 2, f2(x) = max{7y + f3(x− 3y) : x− 3y ≥ 0}, which gives us

f2(10) = max{24, 19, 14, 21} = 24, with y∗2 = 0,

f2(9) = max{12, 19, 14, 21} = 21, with y∗2 = 3,

f2(8) = max{12, 19, 14} = 19, with y∗2 = 1,

f2(7) = max{12, 7, 14} = 14, with y∗2 = 2,

f2(6) = max{12, 7, 14} = 14, with y∗2 = 2,

f2(5) = max{12, 7} = 12, with y∗2 = 0,

f2(4) = max{0, 7} = 7, with y∗2 = 1,

f2(3) = max{0, 7} = 7, with y∗2 = 1,

f2(x) = 0, for x = 2, 1, 0, with y∗2 = 0.

Finally for stage 1, we only need to calculate

f1(10) = max{24, 25, 22} = 25, with y∗1 = 1.

The optimal knapsack consists of 1 type 1 item and then 2 type 2 items, with the total value being
25.
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