
Lecture Notes on Nonlinear Optimization

Shixuan Zhang

ISEN 623, Spring 2024

Contents

1 Introduction 2
1.1 Smooth Functions and Optimization . 2
1.2 Convex Sets and Functions . 4

2 Essentials of Unconstrained Optimization 6
2.1 Solutions and Optimality Conditions . 6
2.2 Iterative Algorithms and Newton’s Method 9

3 Basic Descent Methods 12
3.1 Global Convergence . 12
3.2 Trust Region Methods . 13
3.3 Line Search Methods . 17

4 First-Order Descent Methods 24
4.1 Conjugate Gradient Methods . 24
4.2 Quasi-Newton Methods . 27

5 Essentials of Constrained Optimization 32
5.1 Optimality Conditions and Constraint Qualification 32
5.2 Introduction to Complexity Theory . 40

6 Overview of Constrained Optimization Algorithms 45
6.1 Primal Methods . 46
6.2 Barrier and Penalty Methods . 48
6.3 Dual Methods . 50

1

ISEN 623 Spring 2024

1 Introduction

1.1 Smooth Functions and Optimization

In this course, we study problems of the following form:

min f (x)
s. t. gi(x) = 0, i = 1, . . . , m′,

gi(x) ≤ 0, i = m′ + 1, . . . , m.

(1.1)

Here, x ∈ Rn is a real vector, and f , g1, . . . , gm are deterministically given “sufficiently
smooth” functions. To be more precise, recall that a vector-valued function (or map)
h : Rn → Rd is continuous at x ∈ Rn if for every ϵ > 0, there exists δ > 0 such that

∀ y ∈ Rn, ∥y− x∥ < δ =⇒ ∥h(y)− h(x)∥ < ϵ,

where ∥·∥ is any norm on Rn (or Rd). Using the limit notation, the above condition can
be written more compactly as limy→x f (y) = f (x), or simply f (y) → f (x) as y → x.
The function h is further differentiable at a point x ∈ Rn if there exists a linear function
h′(x) : Rn → Rd such that

lim
y→0

∥h(x + y)− h(x)− h′(x)y∥
∥y∥ = 0.

The linear function h′(x) depends on the point x, so h′ can be viewed as a map from
Rn to all linear maps Rn → Rd, called the differential of h. When the differential
function h′ itself is differentiable, we can again take its differential h′′, called the second-
order differential, and the same can be repeated for h(k), k-th differential whenever it
exists. We assume that our functions f , g1, . . . , gm are all k-th continuously differentiable
on Rn for some k ≥ 1, meaning that all the k-th differentials exist and are continuous
on Rn, which we denote as f , g1, . . . , gm ∈ Ck(Rn). If f is a univariate function, we
simply use f ′ and f ′′ to denote its first- and second-order differential. We then use
∇ f ,∇g1, . . . ,∇gm : Rn → Rn to denote their first-order differential functions, which
are often called gradient vectors, and ∇2 f ,∇2g1, . . . ,∇2gm : Rn → Rn(n+1)/2 to denote
their second-order differential functions, or Hessian matrices when k ≥ 2. Occasionally,
we view gI : Rn → R|I| as a differentiable map for some I ⊆ {1, . . . , m}, the differential
of which can be written as [∇gi

T]Ti∈I and is called a Jacobian matrix.
When m = 0, the problem (1.1) is known as an unconstrained optimization, and

otherwise a constrained optimization. A natural question is to ask whether the minimum
in (1.1) exists. The answer is no in general, as illustrated by the following examples.

Example 1.1. • Consider f (x) = x for x ∈ R, and m = 0. Then for any c ∈ R, we have

2

ISEN 623 Spring 2024

f (c− 1) = c− 1 < c, so there is no minimum.
• Consider f (x) = exp(−x) for x ∈ R, and m = 0. Clearly f (x) > 0, but for any c > 0,

we have f (1 + log c) < c, so there is no minimum.

Strictly speaking, we should use infimum (which is the greatest lower bound on (1.1))
in the place of minimum as it may not be attained. To ease our mind, we want to
make a simplifying assumption that will appear repeatedly in the course. Recall that
a set X ⊆ Rn is open if for any point x ∈ X, there exists a neighborhood of x, e.g.,
U := {y ∈ Rn : ∥y− x∥ < r} for some r > 0, such that U ⊂ X; a set is closed if its
complement is open; and a set X ⊆ Rn is bounded if there exists r ≥ 0 such that for all
y ∈ X, ∥y∥ ≤ r. It is straightforward to check a set X ⊆ Rn is closed if and only if for
any sequence {xi}∞

i=1 ⊆ X such that limi→∞ xi = x ∈ Rn, then x ∈ X.
Let X ⊆ Rn denote a closed feasible set, e.g., Rn in the unconstrained case or {x ∈

Rn : gi(x) = 0, i = 1, . . . , m′, gj(x) ≤ 0, j = m′ + 1, . . . , m} in the constrained case, and
X(a) := X ∩ {x ∈ Rn : f (x) ≤ a} for any a ∈ R, which is called a (sub)level set (with
level a). One can easily check by the definition that for a continuous map, the preimage
of an open (resp. a closed) set is open (resp. closed). Consequently our feasible set X,
together with all the level sets X(a), a ∈ R, is automatically closed.

Assumption 1.2. There exists a ∈ R such that X(a) is nonempty and bounded.

Proposition 1.3. Under Assumption 1.2, the minimum in (1.1) exists, i.e., there exists x∗ ∈ X
such that f (x∗) ≤ f (x) for any x ∈ X.

We will need the following topological fact on Rn to prove this claim: a closed,
bounded subset is (sequentially) compact (the proof of which can be found in standard
textbooks, e.g., [Rud76, Theorem 2.41]).

Lemma 1.4. Suppose Y ⊂ Rn is closed and bounded. Then for any sequence {xi}∞
i=1 ⊂ Y,

there exists a subsequence {xij}∞
j=1 and y ∈ Y such that limj→∞ xij = y.

Proof for Proposition 1.3. Take a ∈ R such that X(a) is closed and bounded. We first show
that f has a lower bound on X(a). Assume for contradiction that for each i ∈N, there
exists xi ∈ X with f (xi) < −i. By Lemma 1.4, there exists a subsequence xij → y ∈ X(a)
as j→ ∞. The continuity of f asserts that f (y) = limj→∞ f (xij), but the limit does not
exist by construction, hence a contradiction.

Now we take a sequence {yi}∞
i=1 ⊂ X(a) such that limi→∞ f (yi) = infx∈X(a) f (x) >

−∞. Apply Lemma 1.4 again, there exists a subsequence yij → x∗ ∈ X(a) as j → ∞.
Thus by continuity f (x∗) = infx∈X(a) f (x) = infx∈X f (x), where the second inequality
is due to f (x) > a for any x ∈ X \ X(a).

While this course is named very generally “nonlinear optimization,” it is limited to
a specific class of problems as detailed below.

3

ISEN 623 Spring 2024

(i) We only consider “continuous-type” variables, i.e., x ∈ Rn. When some of the
variables are restricted to discrete sets, e.g., {0, 1} or Z, the problem is often known
as discrete or integer optimization, and could also involve nonlinear functions. While
these problems are very interesting to study, they will not appear in this course as
the methodologies are typically different from the continuous case.

(ii) We assume that all of the functions f , g1, . . . , gm are deterministically given as
part of the problem description. This is to say that we should be able to evaluate
these functions, together with their differentials (gradient, and Hessian when
f , g1, . . . , gm ∈ C2(Rn)) at arbitrary points without any error. Besides, there are
many practically important situations where the functions are given through
samples or simulations, e.g., f (x) = Eξ F(x, ξ) is an expectation where we only have
access to F and samples of ξ. We will not discuss these formulations in this course.

1.2 Convex Sets and Functions

Arguably, the most important concept in optimization is convexity. We begin with the
definition of a convex set.

Definition 1.5. A subset C ⊆ Rn is convex if for any pair of points x, y ∈ C and any
0 ≤ t ≤ 1, tx + (1− t)y ∈ C.

Intuitively, this means the line segment connecting any two points in the set stays
in the set. Note that both the empty set and the whole space Rn are convex by this
convention.

Exercise 1.6. Show that for any index set I (which is possibly infinite), and ai ∈ Rn, bi ∈ R

for all i ∈ I, the following set is closed and convex:

X := {x ∈ Rn : aT
i x ≤ bi, ∀ i ∈ I}.

It follows from Exercise 1.6 that for any matrix A ∈ Rm×n and vector b ∈ Rm, the
system of linear inequalities Ax ≤ b defines a closed convex set, which is called a
polyhedron. Geometrically, it is cut out by halfspaces aT

i x ≤ bi for each row i = 1, . . . , m.
On a convex set, we can define a convex function.

Definition 1.7. Let X ⊆ Rn be a convex set. A function f : X → R is convex if for any
points x, y ∈ X and 0 ≤ t ≤ 1, the inequality holds:

f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y).

Clearly by definition, if f : X → R is convex and Y ⊆ X is a convex subset, the
restriction f |Y is also convex. To see a concrete example of convex functions, recall

4

ISEN 623 Spring 2024

that any norm ∥·∥ on Rn is subadditive: ∥x + y∥ ≤ ∥x∥+ ∥y∥ for any x, y ∈ Rn, and
absolute homogeneous: ∥tx∥ = |t|∥x∥ for any t ∈ R and x ∈ Rn, which implies the
convexity: ∥tx + (1− t)y∥ ≤ ∥tx∥+ ∥(1− t)y∥ = t∥x∥+ (1− t)∥y∥ for any x, y ∈ Rn

and 0 ≤ t ≤ 1. In particular, the standard Euclidean norm ∥(x1, . . . , xn)∥2 := (x2
1 + · · ·+

x2
n)1/2 =

√
xTx for x = (x1, . . . , xn) ∈ Rn is a convex function.

Exercise 1.8. Let X ⊆ Rn be a convex set and f : X → R a convex function. Then the
epigraph epi f := {(x, t) ∈ X×R : t ≥ f (x)} and the level sets X(a) are again convex for
any a ∈ R.

Example 1.9. The closed Euclidean ball Br := {x ∈ Rn : ∥x∥2 ≤ r} is convex by Exercise 1.8,
for any radius r ≥ 0. Note that for any x /∈ Br, we can set a := x/∥x∥2 such that aTx =
xTx/∥x∥2 = ∥x∥2 > r. Moreover, if ∥x∥2 ≤ r, then for any ∥a∥2 = 1, aTx ≤ ∥a∥2∥x∥2 ≤ r.
Thus we have shown that Br = {x ∈ Rn : aTx ≤ r, ∀ a ∈ Rn, ∥a∥2 = 1}, that is a form
appeared in Exercise 1.6.

We show that a closed convex set always allows separation by a hyperplane from any
exterior point, as in the previous example.

Theorem 1.10. Let C ⊆ Rn be a closed convex set and x /∈ C. There exists d ∈ Rn such that
dTx < infy∈C dTy.

Proof. The claim is trivial if C = ∅ because any vector d satisfies the condition. Thus we
suppose x′ ∈ C, with r := ∥x− x′∥2 and consider the convex function f (y) := ∥y− x∥2

2

on y ∈ C(r2) := C ∩ {y ∈ C : f (y) ≤ r2}. Clearly C(r2) is closed, bounded, and
nonempty, so by Proposition 1.3 there is y∗ ∈ C(r2) such that f (y∗) ≤ f (y) ≤ r2 for any
y ∈ C(r2). Then by assumption c := f (y∗) > 0 because otherwise x = y∗ ∈ C by the
definition of norms. Now let d := y∗ − x and note that

f (ty + (1− t)y∗) = ∥y∗ − x + t(y− y∗)∥2
2 ≥ ∥y∗ − x∥2

2 = f (y∗),

for any y ∈ C and 0 ≤ t ≤ 1, which expands into

2t(y∗ − x)T(y− y∗) + t2∥y− y∗∥2
2 ≥ 0.

By taking t→ 0, we see that dT(y− y∗) ≥ 0, which in turn gives

dTy ≥ dTy∗ = dTx + dT(y∗ − x) = dTx + c > dTx.

A point x ∈ Rn is called a boundary point of X ⊆ Rn if for any r > 0, there exists
y ∈ X and y′ /∈ X such that both ∥x− y∥ < r and ∥x− y′∥ < r. A point x ∈ X that is
not a boundary point is then called an interior point, or we say x is in the interior int X
of X. A set X ⊆ Rn together with all of its boundary point is called its closure, denoted

5

ISEN 623 Spring 2024

as cl X, which is the smallest closed subset of Rn containing X. The boundary points
of X are exactly cl X \ int X. For boundary points on a convex set, instead of finding a
separating hyperplane, we can find a supporting hyperplane, as follows.

Theorem 1.11. Let C ⊆ Rn be a convex set and x ∈ cl X \ int X. There exists d ∈ Rn such
that dTx = infy∈C dTy.

Proof. Take a sequence {xi}∞
i=1 ⊂ Rn \ cl X with limi→∞ xi = x. For each i, by Theo-

rem 1.10, there exists di ∈ Rn such that (di)Txk < infy∈C(di)Ty. By replacing di with
di/∥di∥, we may assume that ∥di∥ = 1 for all i. By Lemma 1.4, there exists a subse-
quence ij such that limj→∞ dij = d for some d ∈ Rn. We thus have for any y ∈ C,
dTx = limj→∞(dij)Txij ≤ limj→∞(dij)Ty = dTy.

When looking at the epigraph of a convex function, the supporting hyperplane is
closely related to the differential at a point, as used in the following proof.

Theorem 1.12. Let f : Rn → R be a convex function that is differentiable at x ∈ Rn. Then for
any y ∈ Rn,

f (y)− f (x) ≥ ∇ f (x)T(y− x).

Proof. Consider the epigraph epi f ⊆ Rn+1, which is convex by Exercise 1.8. The point
(x, f (x)) is a boundary point of epi f due to the continuity of f at x. By Theorem 1.11,
there exists g ∈ Rn and c ∈ R such that gTx + c f (x) ≤ gTy + cz for any y ∈ Rn,
z ≥ f (y). By letting z→ +∞, we know that c > 0 so we can set c = 1 by replacing g with
g/c. Take z = f (y), we get f (y)− f (x) ≥ −gT(y− x). Assume −g ̸= ∇ f (x). There
exists u ∈ Rn with ∥u∥ = 1 such that ∇ f (x)Tu < 0 < −gTu. This is a contradiction
because by the definition of ∇ f (x), there exists δ > 0 such that for any 0 < t < δ,

f (x + tu) < f (x) + t∇ f (x)Tu + t
2
|∇ f (x)Tu| < f (x) ≤ f (x + tu) + tgTu.

Therefore, −g = ∇ f (x), which completes the proof.

Convexity simplifies analysis and boosts algorithmic performance in many ways.
Although this course targets at general (smooth) nonlinear optimization problems, we
will highlight some nice results in the convex cases.

2 Essentials of Unconstrained Optimization

2.1 Solutions and Optimality Conditions

For an unconstrained optimization problem

min
x∈Rn

f (x), (2.1)

6

ISEN 623 Spring 2024

it is important to define the “solutions” of interest.

Definition 2.1. For (2.1), a point x∗ ∈ Rn is called
• a local minimum if there exists ϵ > 0 such that f (x∗) ≤ f (x) for any x ̸= x∗ with
∥x − x∗∥ < ϵ; and further a strict local minimum if f (x∗) < f (x) holds in this
definition;

• a global minimum if f (x∗) ≤ f (x) for all x ̸= x∗; and further a strict global
minimum if f (x∗) < f (x) holds in this definition.

Example 2.2. • Let f (x) = x2 for x ≥ 0 and f (x) = 0 otherwise. Then x∗ = 0 is a local
minimum and a global minimum, but not a strict one.

• Let

f (x) =

(x + 1)2 − 1, x ≤ 0,

−(x− 1)2 + 1, 0 < x < 2,
1
2

(x− 4)2 − 2, x ≥ 2.

Then x∗ = −1 is a strict local minimum, but not a global minimum because f (4) =
−2 < −1 = f (x∗).

The situation is much simplified when the function is linear or quadratic.

Exercise 2.3. • If f (x) = gTx + c is a linear function for some g ∈ Rn and c ∈ R, then
x∗ ∈ Rn is a local minimum of f if and only if g = 0. In this case, any x ∈ Rn is indeed
a global minimum of f .

• If f (x) = 1
2 xTHx + gTx + c is a quadratic function for some real symmetric matrix

H ∈ Sn, vector g ∈ Rn, and number c ∈ R, then x∗ ∈ Rn is a local minimum of f if
and only if Hx∗ = −g and H ⪰ 0 (i.e., H is positive semidefinite). In this case, x∗ is also
a global minimum; it is a strict (local or global) minimum if and only if H ≻ 0 (i.e., H is
positive definite).

While the mathematical definition suggests that one should seek a global minimum
for (2.1), it is often satisfactory to find a local minimum from the practical point of view.
Besides, as we will see later in this course, many famously challenging problems can
be reduced to finding a global minimum of certain nonlinear function f , which leaves
little hope that we can always do this efficiently. Nevertheless, the concept of local
minimality still does not directly lead to computational tractability, because it involves
finding a open neighborhood and checking the function values at all other points in it.
Instead, we use the following necessary or sufficient conditions as surrogates of local
minimality.

Theorem 2.4 (First-order Necessary Condition). Let f : Rn → R be continuously differen-
tiable in an open neighborhood of x∗ ∈ Rn. If x∗ is a local minimum of f , then ∇ f (x∗) = 0.

7

ISEN 623 Spring 2024

Theorem 2.5 (Second-order Optimality Conditions). Let f : Rn → R be twice continuously
differentiable in an open neighborhood of x∗ ∈ Rn.

• (Necessary) If x∗ is a local minimum of f , then ∇ f (x∗) = 0 and ∇2 f (x∗) ⪰ 0.
• (Sufficient) If ∇ f (x∗) = 0 and ∇2 f (x∗) ≻ 0, then x∗ is a (strict) local minimum of f .

An intuitive way to think about the necessary conditions is that we are locally
approximating the function f using a linear or a quadratic function (see Lemma 2.7
below), so by Exercise 2.3 we must have its linear coefficient being 0 and quadratic
coefficient matrix being positive semidefinite. The points satisfying the necessary
conditions in Theorems 2.4 and 2.5 are often called first- and second-order stationary
points, respectively. However, a second-order stationary point may not be a local
minimum, as shown in the following example.

Example 2.6. Consider f (x) = x3 for x ∈ R. Then f ′(0) = f ′′(0) = 0, which makes x∗ = 0
a second-order stationary point of f . It is not a local minimum because f (x) < 0 = f (0) for
any x < 0.

To prove these conditions, we need a form of Taylor’s formula from calculus, the
proof of which can be found for example in [Zor15, Section 8.4.4].

Lemma 2.7. If f : Rn → R is continuously differentiable in a neighborhood of x ∈ Rn, then
for any y ∈ Rn, there exists 0 < t < 1 such that

f (x + y) = f (x) +∇ f (x + ty)Ty.

Moreover, if f is twice continuously differentiable in a neighborhood of x, then there exists
0 < s < 1 such that

f (x + y) = f (x) +∇ f (x)Ty + 1
2

yT∇2 f (x + sy)y.

Proof for Theorem 2.4. Assume for contradiction that∇ f (x∗) ̸= 0 and take y = −∇ f (x∗).
Since ∇ f (x∗)Ty < 0, by the continuity of ∇ f in the neighborhood of x∗, there exists
s > 0 such that∇ f (x∗+ ry)Ty < 0 for all 0 < r < s. For any such r, by Lemma 2.7, there
exists 0 < t < 1 such that f (x∗ + ry) = f (x∗) +∇ f (x∗ + try)T(ry) < f (x∗), which
contradicts with that f (x∗) is a local minimum.

Proof for Theorem 2.5. For the necessary condition, the equality ∇ f (x∗) = 0 is shown
in Theorem 2.4 and the positive semidefiniteness is proved similarly given Lemma 2.7.
We show the sufficient condition as follows. By the continuity of∇2 f in a neighborhood
of x∗, there exists ϵ > 0 such that ∇2 f (x) ≻ 0 for any x ∈ Rn, ∥x − x∗∥ < ϵ. Take
any y ∈ Rn with ∥y − x∗∥ < ϵ. By Lemma 2.7, there exists 0 < s < 1 such that
f (x∗ + y) = f (x∗) + 1

2 yT∇2 f (x∗ + sy)y. This implies that f (x∗ + y) > f (x∗) for any
∥y∥ < ϵ, so x∗ is a strict local minimum.

8

ISEN 623 Spring 2024

Theoretically, one can define higher-order optimality conditions and stationary
points, but computing the higher-order differentials and checking their “positive defi-
niteness” are often challenging and thus of less interest. One may also notice a “missing”
first-order sufficient condition for local optimality, which is due to the lack of strict-
ness of optimal solutions for a linear function (see Exercise 2.3). However, for convex
function, the first-order necessary condition is indeed sufficient for (global) minimality.

Theorem 2.8. If f : Rn → R is a convex function, then any of its local minimum point is
also a global minimum point. Moreover, if f is differentiable at x∗ ∈ Rn, then x∗ is a global
minimum of f if and only if ∇ f (x∗) = 0.

Proof. For the first assertion, assume for contradiction that there exists a local minimum
x∗ ∈ Rn and another point y ∈ Rn such that f (y) < f (x). Then by convexity of f , we
have f (x∗ + t(y− x)) ≤ t f (y) + (1− t) f (x∗) < f (x∗) for any 0 < t < 1. Take t → 0,
this contradicts the local minimality of x∗.
For the second assertion, note that by Theorem 1.12, we have f (y)− f (x∗) ≥ ∇ f (x∗)(y−
x∗) for any y ∈ Rn. Thus ∇ f (x∗) = 0 implies the global minimality of x∗.

2.2 Iterative Algorithms and Newton’s Method

In this course, we focus on iterative algorithms for nonlinear optimization. In plain
words, such methods produce a sequence {xi}∞

i=1 by iteratively updating our incumbent
solution xi to xi+1. In particular,

• the method is called zeroth-order if it only uses information f (xj) for j ≤ i to
produce xi+1;

• it is called first-order if it uses additionally the information ∇ f (xj) for j ≤ i;
• and second-order if ∇2 f (xj) for j ≤ i are also used.

Theoretically one can imagine more higher-order methods, but they are rarely used in
practice due to the cost of computing these differentials. For comparison, we outline an
enumerative algorithm that is impractical for large dimensions n.

Example 2.9. Suppose we only want to search for a solution for minx f (x) within the box
{x ∈ Rn : −b ≤ xi ≤ b, i = 1, . . . , n} for some b > 0. Then we can check all the function
values f (−b + 2a1b/N, . . . ,−b + 2anb/N) for all a ∈ {0, 1, . . . , N}n and find a “minimum”
among them. The benefit of such grid method is that we can approximately find a global minimum,
but with a huge drawback: roughly speaking the approximation error could be proportional
to b/N. Therefore, to reduce the approximation error by half, we may need to double N and
consequently enumerate 2n as many points (e.g., 2100 > 1069 for n = 100)!

The iterative algorithms, limited to local minima or stationary points as they may
be, often perform much more efficiently in terms of the accuracy of the solutions, as
discussed below.

9

ISEN 623 Spring 2024

Suppose we have a sequence of points {xi}∞
i=1 with xi → x∗ as k→ ∞. We say that

the points have a (geometric) convergence of order k if

lim sup
i→∞

∥xi+1 − x∗∥
∥xi − x∗∥k < ∞,

that is, there exist j ∈N and c > 0 such that for all i > j, ∥xi+1 − x∗∥ < c∥xi − x∗∥k. It
is clear that an order-(k + 1) convergence is also an order-k convergence. The order-2
geometric convergence is also called quadratic convergence, and the order-1 geometric
convergence is called linear convergence if the above limit superior is strictly less than 1.
Between linear and quadratic convergences, the term superlinear convergence rate is also
used, if

lim
i→∞

∥xi+1 − x∗∥
∥xi − x∗∥

= 0.

The term sublinear convergence is also occasionally used when the above limit is 1, but
it is not very informative. Alternatively, one can say the sequence has an arithmetic
convergence of order k when there exists c > 0 such that ∥xi − x∗∥ ≤ c · i−k.

Example 2.10. • The sequence xi = 1 does not converge to 0, but satisfies

lim sup
i→∞

|xi+1|
|xi|

= 1 < ∞.

Thus it is important to check convergence before discussing the rate of convergence!
• The sequences of real numbers xi = 1/i and yi = 1/i2 both converge to 0 sublinearly

because limi→∞ i/(i + 1) = limi→∞ i2/(i + 1)2 = 1. However, the sequence {xi}
converges arithmetically of order 1, while {yi} converges arithmetically of order 2.

A celebrated algorithmic idea in optimization and numerical methods is called
Newton’s method, which can be traced back to the Babylonian or Heron’s method for
finding square roots. For our problem (2.1), to find a stationary point, by Lemma 2.7,
when f is sufficiently smooth, we can simply approximate it with a quadratic function
near a given point xi

f (x) ≈ f (xi) +∇ f (xi)T(x− xi) + 1
2

(x− xi)T∇2 f (xi)(x− xi).

Then by Exercise 2.3, an approximate minimizer should be

xi+1 ← xi − [∇2 f (xi)]−1∇ f (xi), (2.2)

assuming that [∇2 f (xi)]−1 exists, which is the update formula for Newton’s method.
As the second-order differential is evaluated in (2.2), it is a second-order method. We
next show its convergence rate as our first example of convergence analysis.

10

ISEN 623 Spring 2024

Theorem 2.11. Suppose x∗ ∈ Rn is a local minimum of a function f ∈ C3(U) for some neigh-
borhood U of x∗, and ∇2 f (x∗) ≻ 0. Then the Newton’s method (2.2) converges quadratically
to x∗ provided that the starting point x0 is sufficiently close to x∗.

We use the notation |||M||| := sup∥x∥=1∥Mx∥ to denote the matrix (operator) norm
for any matrix M ∈ Rm×n. One can check that it is indeed a norm and continuous in M.

Proof. Because f ∈ C3(U), we can apply Lemma 2.7 to ∇ f (x) at x∗ such that there
exists r, α > 0 and ∥∇ f (x∗)−∇ f (x)−∇2 f (x∗)(x∗− x)∥ ≤ α∥x− x∗∥2 for any x ∈ Rn,
∥x− x∗∥ < r. As ∇2 f (x∗) is positive definite, reducing r if needed, by continuity of
∇2 f (x)−1, there exists β > 0 such that |||∇2 f (x)−1||| < β for any ∥x− x∗∥ < r. Now
suppose ∥x0 − x∗∥ < min{r, 1

2αβ}. Then inductively for i = 0, 1, 2, . . .,

∥xi+1 − x∗∥ = ∥xi − x∗ −∇2 f (xi)−1∇ f (xi)∥
= ∥∇2 f (xi)−1(∇2 f (xi)(xi − x∗)−∇ f (xi))∥
≤ |||∇2 f (xi)−1|||∥∇2 f (xi)(xi − x∗)−∇ f (xi)∥

≤ βα∥xi − x∗∥2 <
1
2
∥xi − x∗∥ < min{r,

1
2αβ
}.

Moreover, this shows that ∥xi − x∗∥ ≤ (1
2)i−1∥x0 − x∗∥, so xi → x∗ as i → ∞ and the

convergence is quadratic by the inequality ∥xi+1 − x∗∥ ≤ βα∥xi − x∗∥2.

The assumption that x0 is sufficiently close to x∗ is necessary, even when the function
f is convex, as can be seen from the following example.

Exercise 2.12. Suppose f ∈ C2(Rn). Then f is convex if and only if ∇2 f (x) ⪰ 0 for any
x ∈ Rn. In this case, we say that f is α-strongly convex if the minimum eigenvalue of ∇2 f (x)
is at least α > 0 for any x ∈ Rn.

Example 2.13. Consider a univariate polynomial function f (x) = 4x6 − 15x4 + 42x2, x ∈
R, with its first-order derivative ∇ f (x) = 24x5 − 60x3 + 84x and second-order derivative
∇2 f (x) = 120x4 − 180x2 + 84 ≥ 33

2 > 0. By Exercise 2.12, we know that f is 33
2 -strongly

convex, and has an obvious minimum x∗ = 0, which is strict and thus unique by Theorem 2.5.
Nevertheless, if we start with x0 = 1, we see that ∇ f (x0) = 48 and ∇2 f (x0) = 24, so
x1 = −1 by (2.2). Then ∇ f (x1) = −48 and ∇2 f (x1) = 24 so we would get x2 = 1 again.
This leads to a cycle between x2i = 1 and x2i+1 = −1 for i = 0, 1, 2, . . ., so the Newton’s
method (2.2) does not converge in this case.

11

ISEN 623 Spring 2024

3 Basic Descent Methods

3.1 Global Convergence

A descent method generates a monotone sequence {xi}∞
i=0 with f (x0) ≥ f (x1) ≥ · · · ≥

f (xi) ≥ · · ·. An obvious benefit of descent methods is that we may restrict our attention
to the initial level set X(f (x0)) for convergence analysis, which is particularly useful for
unconstrained optimization problems as Rn itself is not bounded. Another important
fact is the following general framework for global convergence analysis.

Theorem 3.1. Let X ⊆ Rn be an open set, {xi}∞
i=0 ⊆ X, and f ∈ C1(X) such that X(f (x0))

is closed and bounded.
• If for any ϵ > 0, there exists δ > 0 such that whenever ∥∇ f (xi)∥ ≥ ϵ, f (xi) −

f (xi+1) ≥ δ, then any limit point x∗ of {xi} satisfies ∥∇ f (x∗)∥ = 0.
• Suppose f ∈ C2(X). If for any ϵ > 0, there exists δ > 0 such that whenever ∥∇ f (xi)∥ ≥

ϵ or λmin(∇2 f (xi)) ≤ −ϵ, f (xi) − f (xi+1) ≥ δ, then any limit point x∗ of {xi}
satisfies ∥∇ f (x∗)∥ = 0 and ∇2 f (x∗) ⪰ 0.

Proof. For notational simplicity, we only prove the first assertion, while the second
follows from an identical argument. The existence of limit points follows from the
assumption on X(f (x0)) and Lemma 1.4. Assume for contradiction that there is a limit
point x∗ ∈ X of {xi}, i.e., there is a subsequence {xij} with xij → x∗ as j → ∞, such
that ∇ f (x∗) > 0. By the continuity of ∇ f , there exists ϵ > 0 and r > 0 such that
∥∇ f (x)∥ ≥ ϵ for any x ∈ X, ∥x− x∗∥ ≤ r. This means that there is an integer N > 0
such that ∥∇ f (xij)∥ ≥ ϵ for all j > N. By assumption, f (xij) − f (xij+1) ≥ δ for all
j > N, which implies that f (xi)→ −∞ as i→ ∞. This is a contradiction as f attains its
minimum on X by Proposition 1.3.

Note that the values ϵ, δ in Theorem 3.1 can be arbitrary, but they have to be indepen-
dent of the point xi. The surprisingly simple yet powerful idea is sometimes referred to
as Lyapunov-type argument, and can be extended to a more quantitative bound: for ex-
ample, if there exists c > 0 such that δ ≥ cϵ, then to get an iterate xi with ∥∇ f (xi)∥ ≤ ϵ,
we need at most ⌊ f (x0)− f ∗

cϵ ⌋ iterations, where f ∗ := minx∈X f (x). This is an order-1
arithmetic convergence for any subsequence {xij} that converges.

A special case is that f has a unique stationary point x∗ in X(f (x0)), which would
ensure xi → x∗ as i→ ∞ by Theorem 3.1. Generally speaking, we do not have control
over which limit point it converges to, unless we impose further restrictions on our
descent method.

12

ISEN 623 Spring 2024

3.2 Trust Region Methods

A reasonable explanation on the divergence of Newton’s method is that it relies on local
quadratic approximation but sometime goes too far from its region of validness. Thus
a natural idea is to only look for a new point xi+1 within a given radius of the current
point xi. To be precise, we consider the so-called trust-region subproblem

min
y∈Rn

1
2

yTHiy + (gi)Ty

s. t. ∥y∥2
2 ≤ δ2

i ,
(3.1)

where δi > 0 is a preset radius, the symmetric matrix Hi and the vector gi are local
approximation for our function f , which are usually set to be ∇2 f (xi) and ∇ f (xi),
respectively. After getting an optimal update yi from eq. (3.1), we set xi+1 ← xi + yi.
For simplicity, we always use the standard Euclidean norm ∥·∥ = ∥·∥2 in this section.
We want to show that with the additional trust region constraint helps us satisfy the
descent condition in Theorem 3.1.

Note that generally Hi may not be positive semidefinite, especially when the iterate
xi is not close to a second-order stationary point x∗ with ∇ f 2(x∗) ≻ 0. Thus the prob-
lem (3.1) may have local minima that are not global minima. A very useful observation
below shows that even without convexity, we can solve the trust region subproblem for
a (high accuracy) global solution. The proof uses the following simple fact, which we
will discuss in a more general form later in the lectures for constrained optimization.

Exercise 3.2. Let f ∈ C1(Rn). If x is a minimum of f on the sphere {y ∈ Rn : yTy = 1},
then there exists λ ∈ R such that the ∇ f (x) + λx = 0.

Theorem 3.3. For the trust region subproblem (3.1), yi is an optimal solution if and only if
there exists µ ≥ 0 such that

(Hi + µI)yi = −gi, Hi + µI ⪰ 0, µ(∥yi∥2
2 − δ2

i) = 0.

Proof. Assume first the existence of µ ≥ 0 satisfying the three conditions. By Exercise 2.3,
we know that yi is a global optimal solution to the problem

min
y∈Rn

1
2

yT(Hi + µI)y + (gi)Ty.

Thus for any ∥y∥ ≤ δi, we have

1
2

yTHiy + (gi)Ty ≥ 1
2

(yi)THiyi + (gi)Tyi + µ

2
((yi)Tyi − yTy) ≥ 1

2
(yi)THiyi + (gi)Tyi,

where the last inequality is due to that µ((yi)Tyi − δ2
i) = 0. This shows that yi is indeed

13

ISEN 623 Spring 2024

a global minimum to the trust region problem (3.1).
Conversely, assume that yi is a global minimum of (3.1). If ∥yi∥ < δi, then it is

actually an unconstrained minimization, so by Exercise 2.3, it holds that Hiyi = −gi

and Hi ⪰ 0. In this case we can simply choose µ = 0. Thus we assume that ∥yi∥ = δi.
By Exercise 3.2, there exists µ ∈ R such that Hiyi + gi + µyi = 0. Then for any yTy = δ2

i ,

(y− yi)T(Hi + µI)(y− yi) = yT(Hi + µI)y− 2yT(Hi + µI)yi + (yi)T(Hi + µI)yi

= yT(Hi + µI)y + 2(gi)Ty + (yi)T(Hi + µI)yi

≥ 2(yi)T(Hi + µI)yi + 2(gi)Tyi = 0.

This shows that Hi + µI ⪰ 0 and any such µ satisfies the desired conditions.
It remains to show that we can always choose a nonnegative µ ≥ 0. Assume for

contradiction that only µ < 0 is possible. In this case, any y ∈ Rn with ∥y∥2 ≥ δi

satisfies

1
2

yTHiy + (gi)Ty ≥ 1
2

(yi)THiyi + (gi)Tyi + µ((yi)Tyi − yTy) ≥ 1
2

(yi)THiyi + (gi)Tyi,

because µ((yi)Tyi − yTy) = µ(δ2
i − yTy) ≥ 0. From the assumption that yi is a global

minimum of (3.1), we know that yi is a global minimum of 1
2 yTHiy + (gi)Ty on Rn.

Then by Exercise 2.3, we can simply set µ = 0, and this contradiction completes the
proof.

Theorem 3.3 leads to the following procedure to find an optimal solution to the
subproblem (3.1). We first find an eigenvalue decomposition Hi = QΛQT for some
orthogonal matrix Q = (q1, . . . , qn) and a diagonal matrix Λ = diag(λ1, . . . , λn), λ1 ≤
λ2 ≤ · · · ≤ λn. Then we sequentially check the following cases to find yi.

(i) If λ1 ≥ 0, set µ = 0 and let yi := −QΛ†QTgi, where Λ† = diag(0, . . . , 0, λ−1
k , . . . , λ−1

n)
with k := min{1 ≤ i ≤ n : λi > 0}.

(ii) If λ1 < 0 and (q1)Tgi = · · · = (qk−1)Tgi = 0, set µ = −λ1 > 0 and yi :=
−Q(Λ + µI)†QTgi + νq1, where k := min{1 ≤ i ≤ n : λi + µ > 0} and

ν :=

√√√√δ2
i −

n

∑
j=k

((qj)Tgi)2

(λj + µ)2 .

(iii) Otherwise, λ1 < 0 and (qj)Tgi ̸= 0 for some j < k. Consider

y(µ) := −Q(Λ + µI)−1QTgi = −
n

∑
j=1

(qj)Tgi

λj + µ
qj for µ > −λ1 > 0.

14

ISEN 623 Spring 2024

The root of the function

r(µ) := ∥y(µ)∥2 − δ2
i =

n

∑
j=1

((qi)Tgi)2

(λj + µ)2 − δ2
i

gives the desired µ∗ and thus yi := y(µ∗). Notice that µ∗ ≤ −λ1 + ∥gi∥/δi

and r(µ) is a monotone decreasing (rational) function, which allows efficient
high-accuracy solutions (through bisections and Newton’s method as discussed
in section 3.3).

To ensure that eq. (3.1) gives a descent step xi+1 ← xi + yi, one may need to decrease
(or increase) δi based on the value of f (xi + yi). To be more precise, let mi(y) :=
1
2 yTHiy + (gi)Ty and set

ρi := f (xi)− f (xi + yi)
mi(0)−mi(yi)

(3.2)

to be the ratio of actual reduction and predicted reduction. With preselected constants
0 < a, b < 1 and δ > 0, a simple version of the trust region update is described
in Algorithm 3.1, in which we scale down the radius δi if ρi is too small to ensure a
sufficient descent. It is easy to see that the new iterate xi+1 produced by Algorithm 3.1

Algorithm 3.1 A Trust Region Descent Method

Require: 0 < a, b < 1, δ > 0, and xi ∈ Rn

1: set δi ← δ
2: solve eq. (3.1) for yi and calculate ρi.
3: if ρi < a then
4: set δi ← bδi and go back to step 2
5: end if
6: return xi+1 ← xi + yi

satisfies f (xi+1) ≤ f (xi) + ami(yi). We next show that such descent is sufficient for
global convergence (in the sense of Theorem 3.1) for a nice class of functions.

Definition 3.4. For any subset X ⊆ Rn, a map h : X → Rd is β-Lipschitz continuous if
for any x, y ∈ Rn, ∥h(x)− h(y)∥ ≤ β∥x− y∥. A function f ∈ Ck(X) is called k-th-order β-
Lipschitz continuous if its k-th order differential is β-Lipschitz continuous (in the corresponding
vector or matrix norms).

Theorem 3.5. Suppose f ∈ C2(Rn) is second-order β-Lipschitz continuous on X(f (x0)) for a
given x0 ∈ Rn. Then any limit point x∗ of the sequence {xi}∞

i=0 generated by Algorithm 3.1
with gi = ∇ f (xi) and Hi = ∇2 f (xi) satisfies the second-order necessary condition.

Proof. From the second-order β-Lipschitz continuity on X0 := X(f (x0)), using Lemma 2.7,
we know for any x, x + y ∈ X0 there exists some 0 < s < 1 and

∥ f (x + y)− f (x)−∇ f (x)Ty− 1
2

yT∇2 f (x)y∥ = 1
2
∥yT(∇2 f (x + sy)−∇2 f (x))y∥ ≤ β

2
∥y∥3.

15

ISEN 623 Spring 2024

Moreover, there exists η > 0 such that |||Hi||| ≤ η for all i. Now suppose at a point
xi that does not satisfy the second-order necessary condition, i.e., either ∥gi∥ > 0 or
λmin(Hi) < 0.

• If ∥gi∥ > 0, then by setting y(t) := tgi, it is straightforward to verify that mi(yi) ≤
min0≤t≤δi/∥gi∥mi(y(t)) ≤ −1

2∥gi∥min{δi,
∥gi∥
|||Hi|||}. Thus whenever

δi ≤ min

{(
(1− a)∥gi∥

β

)1/2

,
(

(1− a)∥gi∥2

βη

)1/3}
=: δ̄(∥gi∥),

we would have ρi ≥ a and yi will be used to update xi+1. Consequently, δi ≥
min{δ, bδ̄(∥gi∥)} and thus f (xi)− f (xi+1) ≥ 1−a

2 ∥gi∥min{δ, bδ̄(∥gi∥), ∥g
i∥

η } (which
only depends on ∥gi∥ and other constants).

• If λmin(Hi) < 0, then mi(yi) = −1
2(yi)T(Hi + µI)yi − µ

2∥yi∥2 ≤ λmin(Hi)δ2
i

2 so

f (xi)− f (xi+1) ≥ −λmin(Hi)δ2
i

2 − βδ3
i

2 . Thus as long as δi ≤ (1− a) µ
β , we would have

ρi ≥ a and yi will be used. Consequently, δi ≥ min{δ, b(a− 1)λmin(Hi)/β} =:
δ̃(λmin(Hi)) and f (xi)− f (xi+1) ≥ − a

2 λmin(Hi)δ̃(λmin(Hi))2.
Therefore, by Theorem 3.1, we know that any limit point x∗ of {xi}∞

i=0 satisfies the
second-order necessary condition.

In Theorem 2.11, we saw that a basic Newton’s method has quadratic convergence
when the sequence {xi} converges to x∗ satisfying the second-order sufficient condition.
A natural question is whether this is still true for the trust region method. An observation
is that in this case, Hi ≻ 0 for sufficiently large i and thus |||(Hi)−1||| ≤ γ for some
γ > 0, which implies that ∥yi∥ = ∥(Hi)−1gi∥ ≤ γ∥gi∥. Meanwhile, the accepted radius
δ̄(∥gi∥) has an order strictly less than 1 (in terms of ∥gi∥), so yi will be in the interior
of the trust region whenever ∥gi∥ is sufficiently small. This leads to a proof of the
following claim.

Exercise 3.6. Let f ∈ C2(Rn) be a second-order β-Lipschitz continuous function on X(f (x0))
for some given x0 ∈ Rn. Suppose {xi}∞

i=1 is a sequence generated by the trust region method
(Algorithm 3.1) and xi → x∗ for some x∗ ∈ U satisfying the second-order sufficient condition
for f . Then xi converges to x∗ quadratically.

We remark that Algorithm 3.1 with the update procedure following Theorem 3.3 is
an idealized version and may be less practical, as the numerical root-finding of r(µ) and
the eigenvalue decomposition Hi = QΛQT can be both challenging. Instead, one may
want to find an approximate minimum with “good” descent of the function value, such
as searching along the direction y(t) := tgi, as in the proof of Theorem 3.5. This leads
to the discussion of Cauchy points with more specialized procedures and convergence
analyses. For more details, please refer to [NW06, Chapter 4] or [CGT00].

16

ISEN 623 Spring 2024

3.3 Line Search Methods

As we have seen in the previous discussion, one can search for an optimal solution as
the new iterate along a chosen direction, instead of optimizing over a region. This is
exactly the main idea of another popular class of algorithms, namely line search methods.
A typical line search method consists of the following two steps in its i-th update.

(i) Select a direction di ∈ Rn.
(ii) Determine the step length τi ∈ arg minτ∈R≥0

f (xi + τdi).
Then one can set xi+1 ← xi + τidi and continue to the next iteration. The problem
of finding the step length is a 1-dimensional optimization problem, it is sometimes
much easier than the general optimization in Rn. For simplicity, we denote ϕi(τ) :=
f (xi + τdi) in each iteration i, and note that ϕ′i(τ) = ∇ f (xi + τdi)Tdi can be computed
by the gradient of f . We illustrate this in two special cases and suppress the subscript i
in ϕi if no confusion is caused.

When f is a polynomial function with a degree deg f ∈ Z≥2. Then the line search
problem minτ∈R ϕ(τ) can be solved via finding (at most deg f + 1) critical points of
ϕ and comparing the function value at these points, as suggested by the first-order
necessary condition (Theorem 2.4). Finding the critical points is equivalent finding the
roots of the derivative of ϕ, which is again a polynomial function, so this procedure can
be done either analytically or numerically to a high precision.

Another important case is that f is a convex function and we below describe a
method called bisection for the line search problem. Assume that we can estimate an
interval [a0, b0] ⊂ R where the function ϕ(τ) has its differential f ′ change sign on it, i.e.,
ϕ′(a) < 0 < ϕ′(b). It is easy to analyze the performance of the bisection method, as an

Algorithm 3.2 Bisection

Require: ϵ > 0, [a0, b0] ⊂ R such that ϕ′(a0) < 0 < ϕ′(b0)
1: let j← 0
2: repeat
3: set cj ← (aj + bj)/2
4: if f ′(cj) > 0 then
5: set bj+1 ← cj and aj+1 ← aj
6: else if f ′(cj) < 0 then
7: set aj+1 ← cj and bj+1 ← bj
8: else
9: break

10: end if
11: update j← j + 1
12: until bj − aj < ϵ
13: return (aj + bj)/2

optimal solution τ∗ ∈ arg minτ∈[a0,b0] ϕ(τ) always lies within the current interval [aj, bj]
for each iteration j.

17

ISEN 623 Spring 2024

Exercise 3.7. If ϕ ∈ C1([a0, b0]) is convex and ϕ′(a0) < 0 < ϕ′(b0), then Algorithm 3.2 gives
|cj − τ∗| ≤ (1

2)j(b0 − a0) for some τ∗ ∈ arg minτ∈[a0,b0] ϕ(τ) after j-th iteration. This implies
its linear convergence.

Note that Algorithm 3.2 is a first-order method as it uses the derivative ϕ′ informa-
tion. When ϕ′′ is also available, bisection can be combined with the basic Newton’s
method for higher accuracy in practice, i.e., use bisection until we get sufficiently close to
an τ∗ such that the basic Newton’s method would converge. If it is computationally pro-
hibitive to evaluate ϕ′, a similar method called golden section search can be applied with
only zeroth order information (i.e., the function values of ϕ), with a linear convergence
constant

√
5−1
2 ≈ 0.618. More discussion can be found in [LY21, Section 8.1].

Next we try to qualify the Newton’s method for global convergence. While the step
length selection makes it easier to ensure descent, in general we cannot guarantee that
the system of equations for finding the Newton’s direction

Hid = −gi (3.3)

has a solution d = di ∈ Rn, where Hi is typically chosen to be ∇2 f (xi) (or its approxi-
mation) and gi to be ∇ f (xi), e.g., any function f that is locally linear at xi would have
∇2 f (xi) = 0. When it does, it is not necessarily true that di leads to a descent in the
function value, i.e.,

f (xi) > min
τ≥0

f (xi + τdi). (3.4)

Examples can be constructed in one dimension, where f is locally concave but increasing
at xi. To avoid these issues, we consider a special class of functions f ∈ C2(Rn) that
are α-strongly convex for some α > 0, i.e., ∇2 f (x) ⪰ αI for all x ∈ Rn. These functions
clearly have nonsingular Hessian matrices ∇2 f (x) and give a descent direction in
the Newton’s step because ∇ f (x)T[∇2 f (x)]−1∇ f (x) ≥ 0 for any x. We use the nice
properties to show a global convergence result for these functions.

Theorem 3.8. Let f ∈ C2(Rn) be an α-strongly convex function and first-order β-Lipschitz
continuous on X(f (x0)) for some x0 ∈ Rn. Then the line search Newton’s method generates
a sequence {xi}∞

i=0 (via the Newton’s step (3.3) with Hi = ∇2 f (xi) and gi = ∇ f (xi)) that
converges quadratically to the unique minimum x∗ = arg minx∈Rn f (x).

Proof. By assumption, we have αI ⪯ ∇2 f (xi) ⪯ βI for any iteration i. Thus us-

18

ISEN 623 Spring 2024

ing Lemma 2.7, we have

f (xi+1) ≤ f (xi) +∇ f (xi)T(xi+1 − xi) + β

2
∥xi+1 − xi∥2

= f (xi)− τi∇ f (xi)T[∇2 f (xi)]−1∇ f (xi) +
βτ2

i
2
∥[∇2 f (xi)]−1∇ f (xi)∥

≤ f (xi)− τi∇ f (xi)T[∇2 f (xi)]−1∇ f (xi) +
βτ2

i
2α
∇ f (xi)T[∇2 f (xi)]−1∇ f (xi)

= f (xi)−
(

τi −
βτ2

i
2α

)
∇ f (xi)T[∇2 f (xi)]−1∇ f (xi).

Here, the first inequality is due to ∇2 f (xi) ⪯ βI; the next equality is due to xi+1 =
xi + τi[∇2 f (xi)]−1∇ f (xi); and the second inequality is due to [∇2 f (xi)]−1 ⪯ 1

α I. The
step length τi should give a descent greater than or equal to the one given by α

β , which
implies that

f (xi+1) ≤ f (xi)− α

2β
∇ f (xi)T[∇2 f (xi)]−1∇ f (xi) ≤ f (xi)− α

2β2∥∇ f (xi)∥2,

because [∇2 f (xi)]−1 ⪰ 1
β I. Note that this descent only depends on ∥∇ f (xi)∥, so

by Theorem 3.1 we know that xi → x∗ as i→ ∞.
Now let xi,⋄ := xi − [∇2 f (xi)]−1∇ f (xi) denote the basic Newton’s update. By

definition of line search methods, we have f (xi+1) ≤ f (xi,⋄), which implies that

∥xi+1 − x∗∥2 ≤ 2
α

(f (xi+1)− f (x∗)) ≤ 2
α

(f (xi,⋄)− f (x∗)) ≤ β

α
∥xi,⋄ − x∗∥2.

When i is sufficiently large, by Theorem 2.11, we have ∥xi,⋄ − x∗∥ ≤ C∥xi − x∗∥2, for
some constant C > 0, from which we conclude the quadratic convergence

∥xi+1 − x∗∥ ≤ C

√
β

α
∥xi − x∗∥2.

While Theorem 3.8 illustrates the power of line search methods in the strongly
convex setting, it is not easy to generalize it to cases without convexity. In particular,
we have the following two challenges:

(i) when the step length function ϕ is not convex, there could be multiple local
minima and finding an exact minimum along the line can still be challenging;

(ii) when∇2 f (x) has full rank but is indefinite, the Newton’s direction−[∇2 f (x)]−1∇ f (x)
may not give a descent for any step length τ ≥ 0.

For Challenge (i), a common practice is to use an inexact line search that finds a
“reasonably good” step length τi > 0. Despite the possible suboptimality, convergence
can still be established provided that the following condition is satisfied.

Definition 3.9. Fix constants 0 < a < 1 and b > 1. We say that the step length τi > 0 satisfies

19

ISEN 623 Spring 2024

the (a, b)-Armijo condition if ϕi(τi) ≤ ϕi(0) + aτiϕ
′
i(0) and ϕi(bτi) ≥ ϕi(0) + abτiϕ

′
i(0).

Note that the directional derivative of the line search problem ϕ′(0) = ∇ f (xi)Tdi < 0
whenever di is a descent direction. To satisfy the Armijo condition, we can use the
following backtracking method: given xi and di, consider an initial step length τi = τ > 0
and repeat τi ← τi/b until ϕi(τi) ≤ ϕi(0) + aτiϕ

′(0).

Exercise 3.10. Suppose f ∈ C1(Rn). Given any 0 < a < 1 and b > 1, if ϕ′i(0) < 0, then
the backtracking method terminates in finitely many steps with τi > 0 satisfying the Armijo
condition.

Other conditions for inexact line search termination include Wolfe (curvature) condi-
tion or Goldstein conditions, which aim to ensure that the step length τi leads to larger
derivative ϕ′i(τi) (or smaller |ϕ′i(τi)|), or to ensure that τi is sufficiently large. However,
the conditions cannot be satisfied by using backtracking alone and in practice often
requires more sophisticated methods. Please refer to [NW06, Chapter 3] for more
discussion.

For Challenge (ii), one can use modified Hessian matrix Hi instead of the indef-
inite ∇2 f (xi). Perhaps the simplest strategy is to set Hi ← ∇2 f (xi) + µI for a suf-
ficiently large µ > 0 such that Hi ≻ 0. Such modification would guarantee that
di := −[Hi]−1∇ f (xi) is a descent direction. However, as one would expect, the conver-
gence rate would also be compromised unless µ→ 0 sufficiently fast. For an illustrative
purpose, let us consider an extreme case where µ stays large, and in fact, much larger
than needed. Note that the line search direction

di(µ) := − [Hi]−1∇ f (xi)
∥[Hi]−1∇ f (xi)∥

= −
(I + 1

µ∇2 f (xi))−1∇ f (xi)
∥(I + 1

µ∇2 f (xi))−1∇ f (xi)∥
→ −∇ f (xi) (3.5)

as µ→ ∞. In other words, using an (overly) large µ pulls the search direction towards
the opposite direction of the gradient, which is clearly a descent direction. This limiting
behavior gives the famous gradient descent method, which simply sets di = −∇ f (xi) in
each iteration i. Its global convergence is established below.

Theorem 3.11. Suppose f ∈ C1(Rn) that is first-order β-Lipschitz continuous on X(f (x0))
for some x0 ∈ Rn. Consider any sequence {xi}∞

i=0 generated by the gradient descent method
with line search steps satisfying the (a, b)-Armijo condition for some 0 < a < 1 and b > 1.
Then any limit point of {xi} must satisfy the first-order necessary condition. In particular,

min
0≤j≤i

∥∇ f (xj)∥2 ≤ bβ(f (x0)− f ∗)
a(1− a)i

for any i ∈N, where f ∗ := minx∈Rn f (x).

20

ISEN 623 Spring 2024

Proof. Following Theorem 3.1, we want to show that for any ϵ > 0, there exists δ > 0
such that whenever ∥∇ f (x)∥ ≥ ϵ, we have f (x) − f (x − τ∇ f (x)) ≥ δ for any τ

satisfying the Armijo condition. By definition, f (x)− f (x− τ∇ f (x)) ≥ aτ∥∇ f (x)∥2,
so it suffices to show that such τ is bounded from below (independent of the choice of
x). Using Taylor’s approximation (Lemma 2.7) and the first-order β-Lipschitz continuity,
we have

f (x− bτ∇ f (x)) ≤ f (x)− bτ∥∇ f (x)∥2 + βb2τ2∥∇ f (x)∥2.

Use the definition of the Armijo condition again, we also have

f (x− bτ∇ f (x)) ≥ f (x)− abτ∥∇ f (x)∥2.

These two inequalities imply that any step length satisfying the Armijo condition must
satisfy

(1− a)bτ ≤ βb2τ2 =⇒ τ ≥ (1− a)
βb

.

Consequently, we have

f (x)− f (x− τ∇ f (x)) ≥ aτ∥∇ f (x)∥2 ≥ a(1− a)∥∇ f (x)∥2

βb
=: δ > 0.

Moreover, if min0≤j≤i∥∇ f (xj)∥2 > ϵ then f (xi) ≤ f (x0) − a(1− a)iϵ
βb

. Setting ϵ =
bβ(f (x0)− f ∗)

a(1−a)i gives a contradiction with f (xi) ≥ f ∗, which completes the proof.

Theorem 3.11 shows global convergence of gradient descent methods. The rate of the
convergence remains a question. As we know that Newton’s method finds an minimum
of a quadratic function f (x) := 1

2 xTHx + gTx in one iteration, assuming H ≻ 0, it is
thus of interest to see how the gradient descent method (with exact line search steps)
performs in this case. Recall that for a positive definite matrix H, its condition number
κ(H) := λmax(H)/λmin(H) is the ratio of the largest and smallest eigenvalues. A useful
inequality regarding the condition number, due to Kantorovich, is the following.

Theorem 3.12. Let H ≻ 0 and κ(H) be its condition number. Then for any y ∈ Rn,

∥y∥2
2

(yTHy)(yTH−1y) ≥
4κ(H)

(1 + κ(H))2 .

Proof. Let H = QΛQT denote an eigenvalue decomposition of H, where Q is an orthog-
onal matrix and Λ := diag(λ1, . . . , λn) is the diagonal matrix of positive eigenvalues
0 < λ1 ≤ · · · ≤ λn. Take u := QTy and vi := u2

i /∥u∥2
2, i = 1, . . . , n, and the left-hand

21

ISEN 623 Spring 2024

side becomes

∥u∥2
2

(uTΛu)(uTΛ−1u) = 1
(∑n

i=1 λivi)(∑n
i=1 vi/λi)

= ρ(∑n
i=1 λivi)

∑n
i=1 viρ(λi)

,

where ρ(t) := 1/t is the reciprocal function. By the convexity of ρ on R>0 and that

∑n
i=1 vi = 1, the minimum of the above ratio can be attained at v2 = · · · = vn−1 = 0, so

∥y∥2
2

(yTHy)(yTH−1y) ≥ min
v1+vn=1

1
(v1λ1 + vnλn)(v1/λ1 + vn/λn)

= min
0≤vn≤1

κ(H)
(1− vn + vnκ(H))((1− vn)κ(H) + vn) = κ(H)

(1 + κ(H))2 .

The last step is follows from the inequality of arithmetic and geometric means, where
the equality holds for vn = 1

2 .

For simplicity, we will use a weighted norm ∥x∥H := (xTHx)1/2 to quantify the
error instead of the usual Euclidean norm, but it is easy to see that they are equivalent,
i.e., there exists c > 0 such that 1

c∥x∥ ≤ ∥x∥H ≤ c∥x∥ for any x ∈ Rn. In this way we
have ∥x− x∗∥2

H = 2 f (x) + (x∗)THx∗.

Theorem 3.13. Consider a quadratic function f (x) := 1
2 xTHx + gTx for some H ≻ 0 and

g ∈ Rn. Then for any x0 ∈ Rn, the sequence {xi}∞
i=0 produced by the gradient descent method

with an exact line search converges linearly to x∗ = −H−1g. More precisely, for each i ∈ Z≥0,

∥xi+1 − x∗∥H ≤
(

κ(H)− 1
κ(H) + 1

)2

∥xi − x∗∥H.

Proof. Let gi := ∇ f (xi) = Hxi + g = H(xi − x∗) denote the gradient in each itera-
tion i, and the corresponding line search function ϕi(τ) = f (xi − τgi) with ϕ′i(τ) =
−(gi)T(H(xi − τgi) + g) = −∥gi∥2 + τ(gi)THgi. This shows that step length is

τi = ∥gi∥2

(gi)THgi ,

and thus by Theorem 3.12,

∥xi − x∗∥2
H − ∥xi+1 − x∗∥2

H
∥xi − x∗∥2

H
=

2τi(gi)TH(xi − x∗)− τ2
i (gi)THgi

(xi − x∗)TH(xi − x∗)

= ∥gi∥2

((gi)THgi)((gi)TH−1gi)
≥ 4κ(H)

(1 + κ(H))2 .

The proof is then completed by subtracting 1 on both sides.

Theorem 3.13 shows the (global) linear convergence of the gradient descent method

22

ISEN 623 Spring 2024

with exact line search on strongly convex quadratic functions. This rate can also be
shown (in terms of the objective function values) in the general case, assuming that the
second-order sufficient condition holds for the limit point, in an asymptotic sense.

Exercise 3.14. Given any f ∈ C1(Rn) and x0 ∈ Rn, assume that a sequence {xi}∞
i=0 generated

by the gradient descent method with exact line search steps converges to a point x∗ ∈ Rn such
that f ∈ C2(U) for some neighborhood U of x∗ and ∇2 f (x∗) ≻ 0. Then f (xi) converges
linearly to f (x∗).

While the actual rate of convergence may depend on the starting point, there are
case studies that empirically corroborates the linear rate described in Theorem 3.13.
This is somewhat unfavorable as the rate adversely depends on the condition number
of H, even without any consideration of numerical errors. To help visualization, a
typical trajectory of the gradient descent method in a plane is shown in Figure 3.1. Note
that two consecutive updates are perpendicular to each other, known as the “zigzag”
behavior, which reflects the obstacle of condition number for convergence. One can
show that this is true in general.

Exercise 3.15. Let f ∈ C1(Rn) and {xi}∞
i=0 be a sequence generated by the gradient descent

method with exact line search steps. Then xi+2 − xi+1 is orthogonal to xi+1 − xi, for each
i ∈N.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2

Trajectory of gradient descent method on f(x1, x2) = x2
1 + 5x2

2

0.0002

0.1107

0.2212

0.3317

0.4422

0.5527

0.6632

0.7737

0.8842

0.9947

f(x
1,

x 2
)

Figure 3.1: A typical trajectory of the gradient descent method

23

ISEN 623 Spring 2024

4 First-Order Descent Methods

In this section, we consider some more “advanced” first-order methods (i.e., only first-
order differential information of the function is used) that imitate Newton’s method in
some way, for unconstrained optimization problems. This is out of practical considera-
tions that finding the inverse of Hi or ∇2 f (xi) can be computationally formidable for
large n, which is roughly speaking on the order of n3 arithmetic operations. In contrast,
updating points with gradients, for example, only takes n arithmetic operations.

4.1 Conjugate Gradient Methods

In Section 3.3, we have seen that the usual gradient descent method can be slowed down
by a large condition number, when applied to a strongly convex quadratic function
f (x) = 1

2 xTHx + gTx. An alternative method, called conjugate gradient method, solves
this issue to some extent by utilizing conjugate directions. We say that a set of vectors
{d0, . . . , dm} are H-conjugate to each other if (di)THdj = 0 for any i ̸= j, 0 ≤ i, j ≤ m.
Conjugate directions are linearly independent, and can be used to find the minimum of
f in n steps with the exact line search method.

Theorem 4.1. Let f (x) = 1
2 xTHx + gTx and {di}n−1

i=0 be a set of H-conjugate vectors. Then
• {di} are linearly independent;
• for any x0 ∈ Rn, the sequence generated by xi+1 = xi + τidi with τi ∈ arg minτ≥0 f (xi +

τdi) for each i = 0, 1 . . . , n− 1 satisfies xn = x∗ := arg minx∈Rn f (x).

Proof. For the first assertion, suppose there exist σ0, σ1, . . . , σn−1 ∈ R such that ∑n−1
i=0 σidi =

0. Then for any j = 0, . . . , n− 1, if we multiply both sides by (dj)TH, the H-conjugacy
implies that σj(dj)THdj = 0, so σj = 0 because H ≻ 0.

For the second assertion, note that the step lengths satisfy the first-order necessary
condition of the line search functions

(di)T(H(xi + τidi) + g) = 0 =⇒ τi = − (gi)Tdi

(di)THdi ,

where gi := Hxi + g = ∇ f (xi), for each i = 0, . . . , n − 1. Thus xj = x0 + ∑
j−1
i=1 σidi,

which implies that (dj)TH(xj − x0) = 0 for each j = 1, . . . , n. Now by the first assertion,
there exist σ0, . . . , σn−1 ∈ R such that x∗− x0 = ∑n−1

i=0 σidi. Again multiplying both sides
by (dj)TH, we get

σi = (di)TH(x∗ − x0)
(di)THdi = (di)TH(x∗ − xi)

(di)THdi = (di)T(−gi)
(di)THdi = τi.

This shows that x∗ − x0 = ∑n−1
i=0 τidi = xn − x0 so xn = x∗.

24

ISEN 623 Spring 2024

To obtain the H-conjugacy directions, we can use the previous line search directions
to modify the new gradient direction. To be precise, we summarize the conjugate
gradient method in Algorithm 4.1.

Algorithm 4.1 Conjugate Gradient Method

Require: x0 ∈ Rn, H ≻ 0, g ∈ Rn

1: set d0 = −g0 ← Hx0 + g
2: for i = 0, . . . , n− 1 do

3: update xi+1 ← xi + τidi with τi = − (gi)Tdi

(di)THdi

4: if gi+1 = Hxi+1 + g = 0 then
5: return xi+1

6: end if

7: set di+1 ← −gi+1 + σidi with σi = (gi+1)THdi

(di)THdi

8: end for

We now verify that the directions d0, . . . , dn−1 in Algorithm 4.1 are indeed H-
conjugate, so it must return the optimal solution x∗ within n iterations by Theorem 4.1.
The subspace Ki(g0; H) := span{g0, Hg0, H2g0, . . . , Hig0} is often referred to as the
Krylov subspace of degree i.

Theorem 4.2. Suppose gi ̸= 0 for any i = 0, 1, . . . , n− 1 in Algorithm 4.1. Then the generated
sequences {di}n−1

i=0 and {gi}n−1
i=0 satisfy

• span{d0, . . . , di} = span{g0, . . . , gi} = Ki(g0; H), and
• (gi)Tdj = (di)THdj = 0 for any j = 0, 1, . . . , i− 1, for any i = 1, . . . , n− 1.

Proof. We prove both assertions by induction on i. For i = 0, they are trivially true. Now
suppose that they are true for some i. Note that gi+1 = Hxi+1 + g = gi + τiHdi. By the
induction hypothesis, (gi+1)Tdj = (gi)Tdj + τi(di)THdj = 0 for any j < i. Thus by the
definition of τi, (gi+1)Tdi = (gi)Tdi + τi(di)THdi = 0 shows the equality (gi+1)Tdj = 0
for all j < i + 1.

Now the induction hypothesis also implies gi+1 ∈ Ki+1(g0; H) as gi, di ∈ Ki(g0; H) ⊆
Ki+1(g0; H); in fact gi+1 /∈ Ki(g0; H) by the argument above, so we must have Ki+1(g0; H) =
span{g0, . . . , gi+1}. It follows that span{d0, . . . , di+1} = Ki+1(g0; H) from the relation
di+1 = −gi+1 + σidi and the induction hypothesis.

Finally we show the H-conjugacy of the directions di+1 with d0, . . . , di. Note that
(di+1)THdj = −(gi+1)THdj + σi(di)THdj for any j ≤ i. When j = i, this is clearly
zero by the definition of σi. When j < i, Hdj ∈ Ki(g0; H) implies that (gi+1)THdj = 0.
The induction hypothesis says (di)THdj = 0, so (di+1)THdj = 0, which completes the
induction step.

Theorem 4.2 shows the n-step convergence of the conjugate gradient method. It
reduces the dependence on the condition number as in the case of the gradient descent

25

ISEN 623 Spring 2024

methods, but such convergence guarantee still may not be satisfactory when n is large.
Practically speaking, the hope is that it returns an optimal or near-optimal solution
much earlier than the n-th iteration. This can be established, by looking at the number
of distinct eigenvalues of H. Informally, the conjugate gradient method would terminate
in k≪ n steps if H only has k distinct eigenvalues. When the eigenvalues of H can be
clustered into k≪ n groups, then the method would also return a near-optimal solution
after k iterations. For more discussion, please refer to [NW06, Section 5].

Theorem 4.2 also provides an alternative way of writing the step length τi and
direction update coefficient σi. As (gi)Tdi = (gi)T(−gi + σi−1di−1) = −∥gi∥2

2, we have

τi = ∥gi∥2
2

(di)THdi .

Similarly, because gi ∈ Ki(g0; H), (gi+1)Tgi = 0, and thus

(gi+1)THdi = 1
τi

(gi+1)TH(xi+1 − xi) = 1
τi

(gi+1)T(gi+1 − gi) = 1
τi
∥gi+1∥2

2.

This implies that

σi = (gi+1)THdi

(di)THdi = ∥g
i+1∥2

2
∥gi∥2

2
, (4.1)

or

σi = (gi+1)T(gi+1 − gi)
∥gi∥2

2
. (4.2)

The formulas eq. (4.1) and eq. (4.2) help us extend the conjugate gradient method to
general nonlinear functions f ∈ C1(Rn), known as the Fletcher-Reeves and the Polak-
Ribiere methods, respectively, As usual, we use gi := ∇ f (xi) and then use σi to update
the line search direction. We describe a possible implementation of general conjugate
direction methods in Algorithm 4.2.

The global convergence of such general conjugate gradient method is directly im-
plied by the convergence of gradient descent method (as in each loop g0 is the gradient
direction).

Exercise 4.3. Given any f ∈ C1(Rn) and x0 ∈ Rn, any limit point of the sequence {xj}∞
j=1

generated by Algorithm 4.2 satisfies the first-order necessary condition.

The rate of convergence of Algorithm 4.2 can also be characterized as follows.
Suppose the generated sequence xj → x∗ for some x∗ satisfying the second-order
sufficient condition. Then there exists some C > 0 such that ∥xj+1 − x∗∥ ≤ C∥xj − x∗∥2

for all j ∈ Z≥0. A proof for this convergence claim can be found in [Coh72] and a more
complete survey of such methods can be found in [HZ06]. Note that this is not the same
as the usual quadratic convergence because we need to execute n steps (in updating xj,i)
for each of such reduction in the distance xj − x∗, which can be undesired for large n.

26

ISEN 623 Spring 2024

Algorithm 4.2 General Conjugate Gradient Method

Require: x0 ∈ Rn, ϵ ≥ 0
1: set j← 0
2: while ∥∇ f (xj)∥ > ϵ do
3: let g0 ← ∇ f (xj) and d0 ← −g0

4: for i = 0, . . . , n− 1 do
5: if gi = 0 then
6: break
7: end if
8: update xj ← xj,i+1 = xj,i + τidi with τi ∈ arg minτ≥0 f (xj,i + τdi)
9: compute gi+1 ← ∇ f (xj,i+1)

10: set di+1 ← −gi+1 + σidi with σi calculated by eq. (4.1) or eq. (4.2)
11: end for
12: update j← j + 1
13: end while

4.2 Quasi-Newton Methods

The main idea behind quasi-Newton methods is to approximate the inverse of the
Hessian matrix using information from the iterations. Ideally as the sequence {xi}∞

i=0

converges to a desired solution x∗ (with a positive definite Hessian), the approximation
also converges to the Hessian at x∗, imitating the convergence of the Newton’s method.
More precisely, suppose f ∈ C2(Rn). For any two points xi and xi+1, let gi := ∇ f (xi)
and gi+1 := ∇ f (xi+1), with pi := xi+1 − xi. Then a secant approximation of the Hessian
matrix in iteration i is

∇2 f (xi)pi ≈ gi+1 − gi =: qi,

which is exact when f is a quadratic function (so ∇2 f (x) does not vary with x). In
particular, if we use a matrix Ri to approximate the inverse of ∇2 f (xi) based on the
data from first i steps of the descent process, it is natural to expect the (inverse) secant
conditions to hold

Riqj = pj, j = 0, 1, . . . , i− 1. (4.3)

Below we discuss update schemes for Ri that preserves the secant conditions (4.3).
Since the Hessian matrix and its inverse are symmetric matrices, we should keep

our approximation Ri symmetric as well. Perhaps the simplest way is to use rank-one
corrections, i.e.,

Ri+1 = Ri + ρisi(si)T, (4.4)

for some ρi ∈ R and si ∈ Rn. This obviously preserves symmetry of the approximation
matrix Ri. To find a good choice of the vector si, consider the secant condition for j = i

pi = Ri+1qi = Riqi + ρisi(si)Tqi,

27

ISEN 623 Spring 2024

which implies by left multiplication with (qi)T that

(qi)Tpi = (qi)TRiqi + ρi((si)Tqi)2.

Thus eq. (4.4) becomes

Ri+1 = Ri + (pi − Riqi)(pi − Riqi)T

ρi((si)Tqi)2 = Ri + (pi − Riqi)(pi − Riqi)T

(qi)T(pi − Riqi)
. (4.5)

In other words, the secant condition for j = i determines the rank-one correction. In
fact, when f is a quadratic function, all secant conditions for j ≤ i− 1 are also satisfied.

Theorem 4.4. Suppose f (x) = 1
2 xTHx + gTx for x ∈ Rn. Given any initial symmetric n× n

matrix R0, any points {xj}i
i=0 with pj := xj+1 − xj and qj := H(xj+1 − xj), j = 0, . . . , i− 1,

the approximation matrices {Rj}i
j=0 generated by eq. (4.5) satisfy

pj = Ri+1qj, ∀ j = 0, 1, . . . , i.

Proof. We prove the assertion by induction. Suppose the secant condition is satisfied by
some Ri and all pj, qj for j ≤ i− 1, which is trivially true for i = 0. Then for any j ≤ i,

Ri+1qj = Riqj + (qj)T(pi − Riqi)
(qi)T(pi − Riqi)

(pi − Riqi) = pj + (qj)Tpi − (pj)Tqi

(qi)T(pi − Riqi)
(pi − Riqi),

by the induction hypothesis. Now from the relation that (qj)Tpi = (pj)THpi = (pj)Tqi,
we see that the numerator vanishes in the second term, completing the proof for the
induction step.

Theorem 4.4 would imply an n-step convergence, i.e., Rn = H−1, for quadratic
functions f (x) = 1

2 xTHx + gTx for some H ≻ 0, assuming that the updates p0, . . . , pn−1

are linearly independent. Consequently, the quasi-Newton method would terminate
within n + 1 steps for the quadratic function. However, there is a series drawback: the
denominator (qi)T(pi − Riqi) may not be positive, and consequently the approximation
matrix Ri+1 may not be positive definite (even when the true Hessian is). Thus even with
exact line search steps, it is not always guaranteed that the quasi-Newton method with
rank-one corrections is a descent method. Nevertheless, the line search quasi-Newton
method (Algorithm 4.3) sometimes leads to good numerical results.

To ensure that Ri+1 ≻ 0, we can consider rank-two corrections to get Ri+1 from Ri.
The earliest such method is known known as the Davidon-Fletcher-Powell (DFP) method:

Ri+1 = RDFP
i+1 := Ri + pi(pi)T

(pi)Tqi −
Riqi(qi)TRi

(qi)TRiqi . (4.6)

28

ISEN 623 Spring 2024

Algorithm 4.3 Line Search Quasi-Newton Method

Require: x0 ∈ Rn, R0 ≻ 0, ϵ > 0
1: while ∥gi∥ > ϵ do
2: set di ← −Rigi

3: update xi+1 ← xi + τidi where τi ∈ arg minτ≥0 f (xi + τdi), and set pi = τidi

4: evaluate gi+1 = ∇ f (xi+1) and set qi = gi+1 − gi

5: calculate Ri+1 from Ri, pi, and qi using eq. (4.5), (4.6) or (4.11)
6: set i← i + 1
7: end while

This obviously satisfies the secant condition RDFP
i+1 qi = pi. To show the positive definite-

ness of RDFP
i+1 assuming that of Ri, note that by the exactness of the line search steps, we

have ϕ′i(τi) = (pi)Tgi+1 = 0. This implies by the definition of qi that

(pi)Tqi = (pi)T(gi+1 − gi) = −(pi)Tgi = τi(gi)TRigi. (4.7)

Take any x ∈ Rn, the DFP update formula (4.6) shows that

xTRDFP
i+1 x = xTRix + (xTpi)2

(pi)Tqi −
(xTRiqi)2

(qi)TRiqi .

Rewriting a := R1/2
i x and b := R1/2

i qi, this becomes

xTRDFP
i+1 x = (aTa)(bTb)− (aTb)2

bTb
+ (xTpi)2

τi(gi)TRigi ≥ 0.

In fact, the first term vanishes only if there exists λ ∈ R such that a = λb, which says
x = λqi and λ ̸= 0, and thus in this case

xTpi = λ(qi)TRi pi = λτi(gi)TRigi ̸= 0 =⇒ xTRi+1x = λ2τi(gi)TRigi > 0.

Therefore, the DFP method preserves positive definiteness of Ri. We next show that it
has the same finite convergence property when applied to strongly convex quadratic
functions.

Theorem 4.5. Let f (x) = 1
2 xTHx + gTx be a quadratic function with H ≻ 0. Then for any

x0 ∈ Rn, the sequences generated by the DFP method (Algorithm 4.3 with (4.6)) satisfy

(pi)THpj = 0, j = 0, 1, . . . , i− 1,

Ri+1Hpj = pj, j = 0, 1, . . . , i.

29

ISEN 623 Spring 2024

Proof. We first note that

Ri+1Hpi = Ri+1qi =
(

Ri + pi(pi)T

(pi)Tqi −
Riqi(qi)TRi

(qi)TRiqi

)
qi = pi,

for any i ≥ 0. We prove the assertions by induction on i: the base case i = 0 is shown by
the above calculation. Suppose the assertions are true for i− 1. For any j < i, we have
gi = gj+1 + H(∑i

k=j+1 pk), which by the induction hypothesis (pj)THpk = 0 shows that
(pj)Tgi = (pj)Tgj+1 = ϕ′j(τj) = 0. Hence using the induction hypothesis RiHpj = pj,
we see that (pj)THRigi = 0. Thus since pi = −τiRigi and τi ̸= 0, we get (pj)THpi = 0,
for any j < i, which completes the first part of the induction step.

Now since RiHpj = pj for any j ≤ i − 1 by the induction hypothesis, we have
(qi)TRiHpj = (qi)Tpj = (pi)THpj = 0. Consequently, for j ≤ i− 1,

Ri+1Hpj = RiHpj + pi(pi)THpj

(pi)Tqi − Riqi(qi)TRiHpj

(qi)TRiqi = RiHpj = pj.

This together with the relation Ri+1Hpi = pi shown in the beginning completes the
second part of the induction step.

Theorem 4.5 shows that the DFP method is actually a conjugate direction method!
Thus by Theorem 4.1, we know that it finds an optimal solution to the strongly convex
quadratic function in no more than n iterations. Another way to interpret Theorem 4.5
is to note that p0, . . . , pn−1 are eigenvectors of the matrix RnH, corresponding to the
eigenvalue 1. As they are linearly independent by Theorem 4.1, we conclude that
RnH = I and thus Rn = H−1.

So far we have used the secant condition Ri+1qi = pi for updating Ri, an approx-
imation of the inverse of the Hessian ∇2 f (xi). If we want to directly approximate
the Hessian using a matrix Hi, we can impose the secant condition Hi+1pi = qi. The
symmetry between pi and qi in fact leads to the complementary rank-one and rank-two
updates

Hi+1 = Hi + (qi − Hi pi)(qi − Hi pi)T

(pi)T(qi − Hi pi)
, (4.8)

and

Hi+1 = Hi + qi(qi)T

(qi)Tpi −
Hi pi(pi)THi

(pi)Hi pi . (4.9)

These formulas eqs. (4.8) and (4.9) can be used directly in a trust-region method (see Sec-
tion 3.2). Alternatively, the updates of Hi translate into updates of Ri through the
Sherman-Morrison formula:

(A + bcT)−1 = A−1 − A−1bcTA−1

1 + cTA−1b
, (4.10)

30

ISEN 623 Spring 2024

where A is an invertible n× n matrix and b, c ∈ Rn, assuming that 1 + cTA−1b ̸= 0. It
can be checked that the rank-one correction for Ri we get from eq. (4.8) is the same as
as eq. (4.4), and by using eq. (4.10) twice, we get the following formula for Ri:

Ri+1 = RBFGS
i+1 :=

(
I − pi(qi)T

(pi)Tqi

)
Ri

(
I − qi(pi)T

(pi)Tqi

)
+ pi(pi)T

(pi)Tqi

=Ri +
(

1 + (qi)TRiqi

(pi)Tqi

)
pi(pi)T

(pi)Tqi −
pi(qi)TRi + Riqi(pi)T

(pi)Tqi ,
(4.11)

which is known as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. It is again
easy to check that RBFGS

i+1 qi = pi, and assuming (pi)Tqi > 0, RBFGS
i+1 ≻ 0 whenever

Ri ≻ 0. Empirically the quasi-Newton method (Algorithm 4.3) with BFGS updates
often performs better than the DFP updates. As both the DFP and the BFGS methods
are rank-two corrections, they can be unified into a general framework, called Broyden
family, defined as

Rϕ
i+1 := (1− ϕ)RDFP

i+1 + ϕRBFGS
i+1 , (4.12)

where ϕ ∈ R is a preselected parameter, RDFP
i+1 and RBFGS

i+1 are calculated using eqs. (4.6)
and (4.11) with some given Ri, pi, and qi.

Typically we would consider 0 ≤ ϕ ≤ 1 because the exactness of line search steps
would ensure that RBFGS

i+1 ≻ 0 (and hence Rϕ
i+1) by eq. (4.7). In practice, we can let

ϕ vary with the iteration index i. Discussions on how the choice of ϕ affects the
quasi-Newton method, together with convergence analysis can be found in [NW06,
Chapter 6]. Informally speaking, under the assumption of strong convexity and first-
order Lipschitz continuity, the Broyden family quasi-Newton method would converge
superlinearly to the minimum. In a simplest case of a strongly convex quadratic function,
the convergence of Broyden family methods (including the BFGS method) can be shown
using the same argument as in Theorem 4.5.

Exercise 4.6. Let f (x) = 1
2 xTHx + gTx be a quadratic function with H ≻ 0. Then for any

x0 ∈ Rn, the sequences generated by a Broyden family method (Algorithm 4.3 with (4.12) for
some ϕ ∈ R) satisfy

(pi)THpj = 0, j = 0, 1, . . . , i− 1,

Ri+1Hpj = pj, j = 0, 1, . . . , i.

Consequently, the method terminates within n iterations by Theorem 4.1.

For very large n, the storage of the approximation matrix Ri can be overly memory-
consuming. The update formulas (4.6) or (4.11) can be applied on demand, given the
past history of the vectors pj and qj, j = i− 1, . . . , i− l for some l ∈ Z≥1 (Algorithm 4.4).

Here, ł is the number of iterations we want to store the vectors pj and qj, which is
typically chosen to be l ≪ n, hence the name limited-memory. In the extreme case where

31

ISEN 623 Spring 2024

Algorithm 4.4 Limited-Memory Quasi-Newton Update

Require: pj and qj for j = i− 1, . . . , i− l
1: set Ri−l = I
2: for j = i− l, i− l + 1, . . . , i− 1 do
3: calculate Rj+1 from Rj, pj, and qj using eq. (4.5), (4.6) or (4.11)
4: set j← j + 1
5: end for
6: return Ri

l = 1, it is also called memoryless, and the BFGS update formula in this case becomes

R1BFGS
i+1 := I − qi(pi)T + pi(qi)T

(pi)Tqi +
(

1 + (qi)Tqi

(pi)Tpi

)
pi(pi)T

(pi)Tqi . (4.13)

As a result, the line search direction in the BFGS quasi-Newton method (Algorithm 4.3)
becomes

di+1 = −gi+1 + qi(pi)Tgi+1 + pi(qi)Tgi+1

(pi)Tqi −+
(

1 + (qi)Tqi

(pi)Tpi

)
pi(pi)Tgi+1

(pi)Tqi . (4.14)

Again by the exactness of the line search steps, we have (pi)Tgi+1 = 0, so eq. (4.14) is
simplified to

di+1 = −gi+1 + (qi)Tgi+1

(pi)Tqi pi = −gi+1 + σidi, (4.15)

where we use the fact (pi)Tqi = τi(gi)TRigi by eq. (4.7) and σi = (gi+1)T(gi+1 − gi)
(gi)Tgi

is the Polak-Ribiere conjugate gradient coefficient eq. (4.2). Thus the limited-memory
BFGS quasi-Newton method can be viewed as an intermediate method between the
general conjugate gradient method (Algorithm 4.2) and the full-memory quasi-Newton
method (Algorithm 4.3). More discussion can be found in [NW06, Chapter 7].

5 Essentials of Constrained Optimization

5.1 Optimality Conditions and Constraint Qualification

We turn our attention to constrained optimization problems

min
x∈Rn

f (x)

s. t. gi(x) = 0, i = 1, . . . , m′,

gi(x) ≤ 0, i = m′ + 1, . . . , m.

(5.1)

32

ISEN 623 Spring 2024

Analogous to the unconstrained case, we say that a point x∗ ∈ Rn is a local minimum if
there exists ϵ > 0 such that f (x∗) ≤ f (x) for any x ̸= x∗, x ∈ X := {x ∈ Rn : gi(x) =
0, i = 1, . . . , m′, gi(x) ≤ 0, i = m′ + 1, . . . , m} with ∥x − x∗∥ < ϵ; a global minimum
if f (x∗) ≤ f (x) for all x ∈ X \ {x∗}; and is said to be strict if f (x∗) < f (x) holds in
either definition. The goal of this section is to characterize the optimality conditions
for eq. (5.1) parallel to those studied in Section 2.1.

As the feasibility set X is defined by nonlinear constraint functions gi, we are
interested in the tangent directions at a given point x ∈ X, i.e., the directions we can
locally reach from the x and stay within X. Geometrically it can be defined as follows.

Definition 5.1. Let X ⊆ Rn and x ∈ X. The tangent cone of X at x, denoted as Tx(X),
consists of all directions d ∈ Rn such that there exist a sequence {yi}∞

i=1 ⊂ X and {ηi}∞
i=1 ⊂

R>0 with limi→∞ ηi = 0 and limi→∞
1
ηi

(yi − x) = d.

In general, a cone C ⊆ Rn often refers to a subset that is invariant under positive
scaling, i.e., for any d ∈ C and ρ > 0, ρd ∈ C. The tangent cone Tx(X) is indeed a cone
because for any d ∈ Tx(X), we can replace each ηi with ηi/ρ in Definition 5.1 and get
ρd ∈ Tx(X). Moreover, it is closed because for any di → d, {di} ⊂ Tx(X), we can pick
an index j = j(i) for {yij} and {ηij} in the definition such that limi→∞

1
ηij

(yij − d) =
0. However, the definition of tangent cones is not very convenient to use as it is
based on limits of sequences, which motivates us to consider the following alternative
characterization. To check in which direction we can move away from our point x ∈ X, a
heuristic strategy is to linearize all the functions using first-order Taylor approximation
(assuming that they are continuously differentiable) at the point x:

min ∇ f (x)Td

s. t. ∇gi(x)Td = 0, i ∈ E := {1, . . . , m′},
∇gi(x)Td ≤ 0, i ∈ A(x),

(5.2)

where A(x) := {m′ + 1 ≤ i ≤ m : gi(x) = 0} is the active set of inequality constraints at
the point x. It is easy to check that any direction d ∈ Tx(X) must satisfy the linearized
constraints in eq. (5.2). For example, if ∇gi(x)Td > 0 for some i ∈ A(x), then there
exists {yj}j ⊂ X such that∇gi(x)T(yi − x) > 0 for all sufficiently large j. Thus from the
continuity of ∇gi and Lemma 2.7, we know that for large j, gi(yj) = gi(x) +∇gi(x +
s(yj − x))T(yj − x) > gi(x) = 0, for some 0 ≤ s ≤ 1, contradicting yj ∈ X.

The observation can be stated more concisely using the notion of dual cones in convex
geometry. Given a cone C ⊆ Rn, its dual cone is defined as C∗ := {d ∈ Rn : dTc ≥
0, ∀ c ∈ C}, which is closed and convex by Exercise 1.6.

Exercise 5.2. Given cones C1 ⊆ C2 ⊆ Rn, the dual cones satisfy the reverse containment
C∗2 ⊆ C∗1 .

33

ISEN 623 Spring 2024

For the problem (5.1), let G := {g1, . . . , gm} and

Nx(G) :=

 ∑
i∈E∪A(x)

λi∇gi(x) : λi ≥ 0, i ∈ A(x), and λi ∈ R, i ∈ E

denote the convex cone generated by the gradients of active constraint functions, which
is often called the normal cone at x. Similarly, let

Lx(G) :=
{

d ∈ Rn : ∇gT
i d = 0, i ∈ E, ∇gT

i d ≤ 0, i ∈ A(x)
}

denote the linearized tangent cone at x as constructed in the problem (5.2). Then Lx(G) =
−Nx(G)∗ and Nx(G) ⊆ −Tx(X)∗ by the above discussion.

Definition 5.3. We say (Guignard) constraint qualification holds at a point x ∈ X if
Nx(G) = −Tx(X)∗. A constrained optimization problem (5.1) has constraint qualification if
the constraint qualification holds at all of its local minima.

Now suppose x∗ ∈ X is a local minimum. Using the same argument, we must
have ∇ f (x∗)Td ≥ 0 for any d ∈ Tx(X), or equivalently ∇ f (x∗) ∈ Tx(X)∗. Thus given
constraint qualification, we are ready to write down a first-order necessary condition
for local minima, known as the Karush-Kuhn-Tucker (KKT) condition.

Theorem 5.4. Suppose f , g1, . . . , gm ∈ C1(Rn) and the problem (5.1) has constraint qualifica-
tion. If x∗ ∈ X is a local minimum, then there exist λ ∈ Rm such that

∇ f (x∗) +
m

∑
i=1

λi∇gi(x∗) = 0,

λigi(x∗) = 0, i = 1, . . . , m,

λi ≥ 0, i = m′ + 1, . . . , m.

(5.3)

Proof. This follows directly from the way we define Nx(G) and the constraint qualifica-
tion Nx(G) = −Tx(X)∗.

The vector λ in Theorem 5.4 is often called Lagrange multipliers and when there
is only equality constraints (i.e., m = m′ in eq. (5.1)), the equations λigi(x∗) = 0 are
automatically satisfied, and the KKT condition is the same as the Lagrange condition for
constrained extrema in calculus.

34

ISEN 623 Spring 2024

Example 5.5. Consider the problem

min
x1,x2∈R

f (x1, x2) := (x1 + 1)2 + (x2 + 1)2

s. t. g1(x1, x2) := x1x2 = 0,

g2(x1, x2) := −x1 ≤ 0,

g3(x1, x2) := −x2 ≤ 0.

We see that at the point x∗ = (0, 0), the tangent cone Tx∗(X) is generated by the vectors (1, 0)
and (0, 1), and thus −Tx∗(X)∗ = {(x1, x2) ∈ R2 : x1 ≤ 0, x2 ≤ 0}. The normal cone at x∗ is
generated by the vectors (0, 0), (−1, 0), and (0,−1). Thus constraint qualification holds at x∗

because Nx∗(G) = −Tx∗(X). In this case, ∇ f (x∗) = (2, 2), so we can choose the Lagrangian
multiplier to be λ = (0, 2, 2) in Theorem 5.4.

An important observation is that the normal cone Nx(G) is always generated by
finitely many vectors through nonnegative scalar multiplication. Geometrically such
cones are called polyhedral. To be more precise, for a given set of vectors {yi}i∈I ⊂ Rn,
we use cone({yi}i∈I) := {∑i∈I aiyi : there exists a finite set J ⊆ I such that ai ≥ 0, i ∈
J, ai = 0, i /∈ J} to denote the cone generated by {yi}i∈I . A cone is polyhedral if it can be
generated by a finite set of vectors cone({y1, . . . , yk}). Below is a useful fact about the
dual cone of polyhedral cones.

Theorem 5.6 (Farkas’ lemma). Let P be a polyhedral cone. Then P is closed. Consequently,
for any y /∈ P, there exists x ∈ P∗ such that xTy < 0.

Proof. Let {y1, . . . , yk} denote a generating set for the polyhedral cone P. Take any
linearly independent subset {yi}i∈I ⊆ {y1, . . . , yk} and we claim that the cone PI :=
cone({yi}i∈I) is closed. To see this, consider the (|I| − 1)-simplex ∆I := {∑i∈I aiyi :

∑i∈I ai = 1, ai ≥ 0, i ∈ I}. It is easy to check that ∆I is compact, i.e., closed and bounded.
Moreover, 0 /∈ ∆I because of the linear independence of {yi}i∈I . Now take any sequence
{uj}∞

j=1 ⊂ PI such that uj → u ∈ Rn. For each j, we can write uj = bjwj for some bj ≥ 0
and wj ∈ ∆I by the definition of PI . By the compactness of ∆I , there exist a subsequence
{wjl}∞

l=1 and w ∈ ∆I such that wjl → w by Lemma 1.4. Since ∥wjl∥ > 1
2∥w∥ > 0 for all

sufficiently large l, and ∥ujl∥ < 2∥u∥, we know that bjl < 4∥u∥/∥w∥ is bounded. Thus
by again taking a subsequence of jl if necessary, we may assume that bjl → b for some
b ∈ R≥0. Therefore u = liml→∞ ujl = liml→∞ bjl w

jl = bw ∈ PI , which shows that PI is
closed.

Note that P is a finite union of all such cones PI with linearly independent set of
generators I, we know that P is also closed. A direct argument for this is for any
sequence uj → u ∈ Rn, there exist a subsequence {ujl} of {uj} and a subset I ⊆
{1, . . . , k} such that ujl ∈ PI , and hence ujl → u implies u ∈ PI ⊆ P. To show the

35

ISEN 623 Spring 2024

existence of x ∈ P∗, by Theorem 1.10, there exists such x such that xTy < infy′∈P xTy′.
As P is a cone, the right-hand side must be 0, which completes the proof.

Exercise 5.7. For any polyhedral cone P ⊆ Rn, the dual of the dual cone P∗∗ = P.

Next we discuss important cases where constraint qualification (and thus the KKT
condition) holds. Perhaps the simplest case is that all constraints gi are linear functions.
In this case, it is easy to describe the tangent cone and using Theorem 5.6 one can show
that the constraint qualification holds automatically.

Exercise 5.8. Suppose g1, . . . , gm are linear functions. Then for any x ∈ X, the tangent cone
Tx(X) = Lx(G). Thus the constraint qualification Nx(G) = −Tx(X)∗ holds at any x ∈ X.

For nonlinear constraints, while the constraint qualification needs to be assumed, it
holds in many practical cases. To be more precise, let us consider the following specific
constraint qualifications that are widely used in the literature.

Definition 5.9. Let x ∈ X. We say that
• the linear independence constraint qualification (LICQ) holds at x if the gradients
∇gi(x) are linearly independent for all i ∈ E ∪ A(x).

• the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x if the gra-
dients ∇gi(x) are linearly independent for i ∈ E, and there exists d ∈ Rn such that
∇gi(x)Td < 0 for all i ∈ A(x) and ∇gj(x)Td = 0 for all j ∈ E.

To show that LICQ and MFCQ are indeed constraint qualifications, we need the
following implicit function theorem from calculus (the proof of which can be found
in [Zor15, Section 8.5] for example). To simply our notation, we use Bm

1 (x; r) := {y ∈
Rm : |xi − yi| < r, i = 1, . . . , m} to denote the m-dimensional width-(2r) box centered
at the given point x.

Lemma 5.10. Let G : U → Rm be a k-times continuously differentiable map on an open subset
U ⊂ Rm+l such that for some (ū, v̄) ∈ U, we have G(ū, v̄) = 0, and the differential∇uG(ū, v̄)
is an invertible matrix, then there exist ϵ > 0 and a k-times continuously differentiable map
h : B1(ū; ϵ)→ B1(v̄; ϵ) such that

G(u, v) = 0 ⇐⇒ v = h(u), ∀ (u, v) ∈ Bm
1 (ū; ϵ)× Bl

1(v̄; ϵ),

and ∇h(u) = −[∇uG(u, h(u))]−1∇vG(u, h(u)).

Theorem 5.11. For any x ∈ X, MFCQ holds at x if LICQ holds at x. Moreover, if MFCQ
holds at x, then Tx(X) = Lx(G) and the constraint qualification Nx(G) = −Tx(X)∗ holds.

Proof. We first show that LICQ implies MFCQ at x. It is clear that ∇gi, i ∈ E are
linearly independent. To construct a desired d ∈ Rn, consider the matrix J(x) :=

36

ISEN 623 Spring 2024

(∇gT
i (x))i∈E∪A(x), which has full row rank |E|+ |A(x)| ≤ n. Hence we can augment it

(by adding rows) into a nonsingular n× n matrix J̄(x), which gives a unique solution
d ∈ Rn to the system J̄(x)d = e, where e ∈ Rm is the vector with ei = −1 for any
i ∈ A(x) and 0 otherwise. This gives the desired d in MFCQ.

We next show that MFCQ is indeed a constraint qualification at x, i.e., −Nx(G) =
Lx(G)∗ = Tx(X)∗. By Exercise 5.2 and Exercise 5.7, it suffices to show that Lx(G) ⊆
Tx(X) under MFCQ. Let d ∈ Lx(G) and d◦ ∈ Rn such that ∇gT

i d◦ = 0 for any i ∈ E,
and ∇gT

i d◦ < 0 for all i ∈ A(x), the existence of which is guaranteed by MFCQ. For
any 0 ≤ t ≤ 1, consider e = et := d + td◦ ∈ Rn and we claim that e ∈ Tx(X) for all
sufficiently small t > 0. This ensures d ∈ Tx(X) by taking t→ 0 and using the fact that
Tx(X) is closed.

It remains to show the claim. Consider a map F : Rm′+1 → Rm′ by Fi(y, s) := gi(x +
se + J(x)Ty) for each i ∈ E, where J(x) := (∇gi(x)T)i∈E denotes the Jacobian matrix at
x. The nonlinear equation F(y, s) = 0 has a solution (0, 0) with ∇yF(0, 0) = J(x)J(x)T,
which has full rank by the linear independence assumption of ∇gi(x) for i ∈ E.
Lemma 5.10 then shows that there exists a continuously differentiable map y : (−ϵ, ϵ)→
Rm′ such that y(0) = 0, F(y(s), s) = 0, and y′(s) = −∇yF(y(s), s)−1∇sF(y(s), s) for
all −ϵ < s < ϵ. Hence we have y′(0) = 0. Now put x(s) := x + se + J(x)Ty(s) for
−ϵ < s < ϵ, which gives x(0) = x, x′(0) = e and gi(x(s)) = 0 for all i ∈ E. Moreover,
gi(x(s)) < 0 for all i /∈ E ∪ A(x), and g′i(x(0)) = ∇gT

i e < 0 for all i ∈ A(x). This
ensures that x(s) ∈ X for all sufficiently small s > 0 and thus e = x′(0) ∈ Tx(X).

One of the reasons that LICQ (or MFCQ) is favored is that it holds in almost all cases.
To be more precise, Sard’s theorem from differential geometry (see e.g., [Lee12, Chapter
6]) tells us that given a sufficiently smooth map G : Rn → Rm (assuming m ≤ n), the
set C := {x ∈ Rn : rank(∇gi(x)T)m

i=1 < m} of rank-deficient Jacobian matrices has its
image G(C) of Lebesgue measure zero in Rm. Informally speaking, this means that the
perturbed problem

min
x∈Rn

f (x)

s. t. gi(x)− ϵi = 0, i = 1, . . . , m′,

gi(x)− ϵi ≤ 0, i = m′ + 1, . . . , m,

(5.4)

for some random vector ϵ = (ϵ1, . . . , ϵm) following a continuous distribution (e.g.,
multivariate normal distribution) on Rm will satisfy LICQ (and thus MFCQ) with
probability one. In this sense, perturbation is often mentioned to assume that the
optimization problem satisfies the constraint qualification. It is worth mentioning that,
this does not automatically mean we will easily find the KKT multipliers λ1, . . . , λm.
In fact, such multipliers may only be found with very large norm (e.g., |λi| = 10100),

37

ISEN 623 Spring 2024

leading to numerical difficulties for optimization algorithms in practice.
Another reason for using LICQ is that one can define second-order optimality

conditions, analogous to the unconstrained problems. Let us define the Lagrange function
associated with the constrained optimization (5.1)

L(x, λ) := f (x) +
m

∑
i=1

λigi(x), (5.5)

where x ∈ Rn and λ ∈ Λ := Rm′ ×Rm−m′
≥0 . Then the KKT condition at x∗ ∈ X translates

to the existence of λ∗ ∈ Λ such that λ∗i gi(x∗) = 0 for i = 1, . . . , m, and the first-order
optimality condition ∇xL(x∗, λ∗) = 0 in the variable x. In particular, LICQ ensures
that the multiplier λ∗ must be unique whenever it exists. The second-order optimality
conditions can be formulated as follows. Let (x∗, λ∗) ∈ X×Λ denote a KKT pair.

• (Necessary) If x∗ is a local minimum for (5.1), then

dT∇2
xxL(x∗, λ∗)d ≥ 0

for any d ∈ Rn such that ∇gi(x∗)Td = 0, i ∈ E ∪ A(x∗).
• (Sufficient) If for any d ̸= 0 such that ∇gi(x∗)Td = 0, i ∈ E ∪ A+(x∗),

dT∇2
xxL(x∗, λ∗)d > 0,

then x∗ is a local minimum for (5.1). Here, we use A+(x∗) := {m′ + 1 ≤ i ≤ m :
λ∗i > 0} to denote the indices of inequality constraints, associated with which the
multiplier is positive.

A proof of this second-order optimality condition is based on a variant of the implicit
function theorem and can be found in [BN23, Section 4.2].

When the constraints in (5.1) are convex (i.e., g1, . . . , gm′ are linear functions, and
gm′+1, . . . , gm are convex functions), there is a simple constraint qualification.

Definition 5.12. We say the Slater constraint qualification or Slater condition holds for
problem (5.1) if there exists x◦ ∈ X such that gi(x◦) = 0 for i = 1, . . . , m′ and gi(x◦) < 0 for
i = m′ + 1, . . . , m.

Theorem 5.13. Suppose g1, . . . , gm′ : Rn → R are linear functions, and gm′+1, . . . , gm :
Rn → R are convex functions. If the Slater condition holds for (5.1), then constraint qualifica-
tion holds at any x ∈ X.

Proof. Without loss of generality, we may assume that {∇gi}m′
i=1 are linearly independent

by taking a maximal such subset of them. Thus by Theorem 5.11, it suffices to show
that for any x ∈ X, MFCQ holds at x. Take d := x◦ − x ∈ Rn. Clearly ∇gi(x)Td =

38

ISEN 623 Spring 2024

gi(x◦)− gi(x) = 0 for each i ∈ E. For any i = m′ + 1, . . . , m, the convexity implies

gi(x) +∇gi(x)Td ≤ g(x◦) < 0,

by Theorem 1.12. As gi(x) = 0 for i ∈ A(x), we conclude that d is the desired direction
in MFCQ.

Theorem 5.13 shows a more verifiable constraint qualification for convex constraints.
In fact, if the objective function is further assumed to be convex, then the KKT condition
is also sufficient for (global) optimality, analogous to the unconstrained optimization
problems.

Theorem 5.14. Suppose f , gm′+1, . . . , gm are convex and g1, . . . , gm′ are linear in (5.1). If the
pair (x∗, λ∗) ∈ X×Λ satisfies the KKT condition, then x∗ is a global minimum of (5.1).

Proof. By assumption, the Lagrange function L(x, λ) is a convex function in x for any
λ ∈ Λ. Therefore by Theorem 1.12, we have

L(x, λ∗) ≥ L(x∗, λ∗) +∇xL(x∗, λ∗)T(x− x∗) = L(x∗, λ∗) = f (x∗),

because of the first-order condition∇xL(x∗, λ∗) = 0 and the complementarity condition
λ∗i gi(x∗) = 0. Now from λ∗ ∈ Λ, we conclude that for any x ∈ X

f (x) ≥ f (x) +
m

∑
i=1

λ∗gi(x) = L(x, λ∗) ≥ f (x∗).

Theorem 5.14 can also be interpreted as a strong duality result (cf. linear optimization
duality in [LY21, Chapter 3]). For any problem (5.1) (that is not necessarily convex),
consider the Lagrangian dual function

ϕ(λ) := inf
x∈Rn

L(x, λ). (5.6)

Exercise 5.15. The dual function ϕ(λ) is a concave function on the set {λ ∈ Λ : ϕ(λ) > −∞}.
Moreover, we have

sup
λ∈Λ

ϕ(λ) ≤ inf
x∈X

f (x).

Using this notation, Theorem 5.14 says that for a convex optimization problem (5.1),
any KKT pair (x∗, λ∗) satisfies the equality in Exercise 5.15, because

ϕ(λ∗) ≤ sup
λ∈Λ

ϕ(λ) ≤ inf
x∈X

f (x) = f (x∗),

where the first equality is due to the first-order optimality condition ∇xL(x∗, λ∗) = 0,
which shows x∗ ∈ arg minx∈Rn L(x, λ∗) by Theorem 2.8.

39

ISEN 623 Spring 2024

5.2 Introduction to Complexity Theory

It is natural to ask the question: how “difficult” is it to solve a (constrained) nonlinear
optimization problem? The answer clearly depends on our definition of difficulty.
Imagine there is an “omniscient” machine, which is often called an oracle, that answers
a certain type of questions immediately (e.g., our nonlinear optimization problem), then
what we ordinary people view as difficult can be easy for the machine. Thus for our
discussion, we need to first define the notion of complexity.

By problem class, we refer to a family of problems sharing some basic properties. For
example, if all of the constraints in (5.1) are linear and the objective function is quadratic,
then all of such problems form a problem class, which is often referred to as (linearly
constrained) quadratic optimization, and can be written as

min
x∈Rn

xTHx + gTx

s. t. aT
i x− bi ≤ 0, i = 1, . . . , m,

(5.7)

for some symmetric matrix H ∈ Rn×n, vectors g, a1, . . . , am ∈ Rn, and numbers
b1, . . . , bm ∈ R. An instance in a problem class is a problem with some specific data set.
For example, an instance of the linearly constrained quadratic optimization can be

min
x∈R2

− x2
1 − x2

2 + x1 + x2

s. t. − x1 ≤ 0,

x1 − 1 ≤ 0,

− x2 ≤ 0,

x2 − 1 ≤ 0.

To measure the size of an instance, we assume that all the data (H, g, a1, . . . , am, b1, . . . , bm)
consists of rational entries. For a rational number p/q ∈ Q where p ∈ Z and q ∈ Z>0

are integers, we define the encoding size of p/q as 1 + ⌈log2(|p|+ 1)⌉+ ⌈log2(|q|+ 1)⌉.
The size of an instance is then the sum of all encoding sizes of the entries of its data.

To compare different instance sizes (and later different algorithms), we say that a
function ϕ : S→ R≥0 is polynomially bounded by another function ψ : S→ R≥0 if there
exists a polynomial π : R → R such that ϕ(s) ≤ π(ψ(s)) for any s ∈ S. When such
polynomial π is linear, then people simply write ϕ(s) = O(ψ(s)) for s ∈ S. For example,
given a rational vector v := (p1/q1, . . . , pn/qn) ∈ Qn with encoding size s, the encoding
size of Lv is bounded O(ns), where L is the least common multiple of q1, . . . , qn. This
suggests that we may assume the data of (5.7) are all integers without any significant
impact on the instance size.

Exercise 5.16. Given a nonsingular rational matrix A ∈ Qn×n and a rational vector b ∈ Qn,

40

ISEN 623 Spring 2024

the encoding size of the solution to Ax = b is polynomially bounded by the encoding sizes of A
and b.

An algorithm for solving a problem is a procedure that produces a correct answer in
a finite amount of time on any given instance. Assuming an oracle, the oracle-based time
complexity of an algorithm is the number of oracle calls it requires to solve any instance in
the problem class, which is usually expressed through parameters defining the problem
class (e.g., degrees of the polynomial functions in the objective or constraints), and
the dimensions (e.g., n and m). Note that for instances with rational problem data
that have bounded encoding sizes, the dimensions usually imply the encoding size for
bounded-degree polynomial objective and constraints. We simply say time complexity if
we only assume the oracle of basic arithmetics, meaning that we can precisely calculate
the sum, difference, products, and quotients of any two rational numbers immediately,
unless stated otherwise. An algorithm is said to have polynomial time if both the time
complexity is polynomially bounded by the instance size. Similarly a notion of space
complexity can be defined for an algorithm as the encoding size of the intermediate
algorithmic data before an it terminates.

A decision problem is a problem whose answer is either “yes” or “no.” Such problem
is said to be in complexity class P if there exists a polynomial time algorithm to find
the answer, whose space complexity is also polynomially bounded. We are also very
interested in an important complexity class, named NP. A heuristic way to describe NP
problem classes is that they admit a certificate to the “yes” answer that can be checked
in polynomial time. Sometimes people also talk about co-NP class, in which there
are certificates to the “no” answer that can be checked in polynomial time. We say a
decision problem D in NP is NP-complete if all other problems D′ in NP can be reduced
to D in polynomial time. That is to say, there exists a polynomial time algorithm such
that for every instance I of D′, produces an instance of D whose answer is “yes” if
and only if the answer to I is “yes.” We can define a problem to be co-NP-complete in a
similar way. Any decision problem D is called NP-hard if any problem D′ in NP can
be reduced to D in polynomial time. Intuitively speaking, if we can find a polynomial
time algorithm to solve an NP-hard problem, then we can answer any decision problem
in NP in polynomial time. From the definitions, a decision problem is NP-complete if
and only if it is both in NP and is NP-hard.

In the context of optimization problems, such as min{ f (x) : x ∈ X}, its associated
decision problem is usually the following:

Given v ∈ R, does there exist x ∈ X ⊆ Rn such that f (x) ≤ v?

Such decision problem is in NP if for every v ∈ Q, we can find a solution x ∈ X ∩Qn

with f (x) ≤ v and its encoding size polynomially bounded by the description of X and
f (typically given by polynomial functions with rational coefficients), whenever the

41

ISEN 623 Spring 2024

answer is “yes.” An example would the quadratic optimization problem (5.7). From the
KKT condition (as the constraint qualification holds by Exercise 5.8) and Exercise 5.16,
one can show the following.

Exercise 5.17. The decision problem associated with any bounded quadratic optimization (5.7)
is in NP.

To show NP-hardness of a decision problem, we need to reduce a known NP-
complete problem to it. A popular choice is the 3-satisfiability (or 3-SAT) problem:

Given a set of Boolean variables x1, . . . , xn ∈ {0, 1}, and a Boolean expression

z =
m

∏
i=1

max{zi1(x), zi2(x), zi3(x)},

where each zij(x) is either xk or 1− xk for some k = 1, . . . , n, for each i =
1, . . . , m, j = 1, 2, 3, does there exist a solution for x1, . . . , xn such that z = 1?

It is easy to see that the 3-SAT problem has an “yes” answer if and only if the linear
constraints zi1(x) + zi2(x) + zi3(x) ≥ 1 hold for any i = 1, . . . , m, and the Boolean
restrictions xi ∈ {0, 1} can be enforced by x2

i − xi = 0. Thus deciding whether general
nonlinear constrained optimization problem is feasible is NP-hard. With a slightly
more effort, we can show that this is also the case for linearly constrained quadratic
optimization problem.

Theorem 5.18. The decision problem associated with the quadratic optimization (5.7) is NP-
hard.

Proof. Given a 3-SAT instance (with Boolean variables x1, . . . , xn), we construct a quadratic
optimization instance with variables y1, . . . , yn as follows

min
n

∑
i=1

yi(1− yi)

s. t. 0 ≤ yi ≤ 1,

zi1(y) + zi2(y) + zi3(y) ≥ 1, i = 1, . . . , m.

It is straightforward to check that this quadratic optimization problem size is polyno-
mially bounded by n and m, and thus polynomially by the encoding size of the 3-SAT
problem. We claim that the answer to the 3-SAT problem is “yes” if and only if the
minimum value of the quadratic optimization is less than or equal to 0. To see the if
direction, note that yi(1− yi) ≥ 0 for each i, so the minimum value being 0 implies that
yi ∈ {0, 1}. Thus we can simply set xi to be the associated optimal solution of yi. To see
the only-if direction, we simply set yi = xi for each i = 1, . . . , n, which clearly satisfies
the constraints by definition of the 3-SAT problem.

42

ISEN 623 Spring 2024

Theorem 5.18 suggests that finding a global minimum of a linearly constrained
quadratic optimization problem can be very challenging in general. It is slightly sur-
prising that, even checking the local minimality of a feasible point is also NP-hard.
The proof can be found in the classical paper [MK85] and is closely related to the
NP-hardness of the following problem:

Given a symmetric matrix H ∈ Qn×n, is xTHx ≥ 0 for all x ∈ Rn
≥0?

Such matrices are called copositive and form a convex cone in Rn×n. They have been
used for reformulation of many NP-hard problems.

Our discussion shows that, in general, we should not expect to solve nonlinear
optimization problems to a global or local minimum certifiably in polynomial time
(unless one expects to do so for any problems in the NP class). In practice, people
aim at finding a point that satisfies the KKT condition as a tractable surrogate for local
minimum points. There is, however, a nice exception where all of the objective and
constraint functions are convex. In the rest of this section, we outline a polynomial-time
algorithm (in terms of the dimensions), named ellipsoid method, for handling such convex
nonlinear optimization problems.

From now on we only assume that f , g1, . . . , gm in (5.1) are continuously differen-
tiable, and the gradient of each can be evaluated in O(n) time. As we may be dealing
with general nonlinear functions, it is no longer sufficient to assume exact arithmetics
only for rational numbers. Instead, we assume the oracle for real number arithmetics, i.e.,
we can represent and take basic arithmetics of real numbers with fixed computational
cost. This is of course an idealized assumption, but it helps us focus on the difficulty
from the optimization problem, not from doing the arithmetics.

The decision problem we face is the following: given v ∈ R,

does there exist x ∈ X(v) := {x ∈ X : f (x) ≤ v}?

We make the following assumption on the problem class under consideration.

Assumption 5.19. Suppose f , g1, . . . , gm are convex functions with m′ = 0 in (5.1). For the
level set X(v) ⊆ Rn, we assume that

(i) we can find y ∈ Rn and R > 0 such that X(v) ⊆ BR(y) := {x ∈ Rn : ∥x− y∥2 ≤ R};
and

(ii) there exist y′ ∈ Rn and r > 0 such that Br(y′) ⊆ X(v).

The first condition in Assumption 5.19 is not hard to satisfy, as in many practical
problems we would have a bounded feasibility set X, so X(v) would also be bounded
by the same radius. The second condition in Assumption 5.19 is for later convergence
analysis and basically says that the set should not be too small or too “narrow” which
can be quantified through the radius of the ball contained in its interior. This radius r is

43

ISEN 623 Spring 2024

related to the optimality gap v− f ∗ via the Lipschitz or first-order Lipschitz constant of
f on X. The assumption m′ = 0 is because otherwise our variable would be inevitably
contained in an affine subspace defined by the linear equality constraints, so X(v) does
not have an interior and fails the second condition. However, we may restrict our
attention to a lower dimensional space Rn′ with n′ ≤ n through an affine change of
coordinates so the assumption is not restrictive for our discussion on the complexity.

Before we present a polynomial-time algorithm, recall that an ellipsoid is the set
E(y, Q) := {x ∈ Rn : (x− y)TQ(x− y) ≤ 1} parametrized by the center y ∈ Rn and
the n× n positive definite matrix Q ≻ 0. Clearly Br(y) = E(y, 1

r2 I). An ellipsoid is an
affine linear image of a n-dimensional ball, which tells us its volume by vol E(y, Q) =
vol B1(0) det(Q−1/2). When the defining matrix Q ⪰ 0 is only positive semidefinite, we
call such E(y, Q) a degenerate ellipsoid.

We are now ready to present the ellipsoid algorithm for solving the decision problem.
The main idea is that for the intersection E(yi, Qi) ∩ {x ∈ Rn : (hi)Tx ≤ (hi)Tyi} in the
iteration i, we can find a new ellipsoid E(yi+1, Qi+1) containing the intersection where

yi+1 := yi − 1
n + 1

Q−1
i hi

((hi)TQ−1
i hi)1/2

,

Qi+1 := n2 − 1
n2

(
Q−1

i −
2

n + 1
Q−1

i hi(hi)TQ−1
i

(hi)TQ−1
i hi

)−1

.

(5.8)

Algorithm 5.1 Ellipsoid Algorithm

Require: x0 ∈ Rn, Q0 := 1
R2 I ≻ 0 such that X(v) ⊆ E(x0, Q0)

1: while max{ f (xi)− v, g1(xi), . . . , gm(xi)} > 0 do
2: if f (xi) > v then
3: let hi := ∇ f (xi)
4: else
5: for j = 1, . . . , m do
6: if gj(xi) > 0 then
7: let hi := ∇gj(xi)
8: end if
9: end for

10: end if
11: set Qi+1 and yi+1 using eq. (5.8) and let i← i + 1
12: end while

The convergence of Algorithm 5.1 is based on the following observation, the proof
for which is mainly calculation and can be found in [LY21, Chapter 5.3] for example.

Lemma 5.20. The ellipsoid E(yi+1, Qi+1) ⊇ E(yi, Qi) ∩ {x ∈ Rn : (hi)Tx ≤ (hi)Tyi} for

44

ISEN 623 Spring 2024

each i = 0, 1, Moreover,

vol E(yi+1, Qi+1)
vol E(yi, Qi)

= n
n + 1

(
n2

n2 − 1

)(n−1)/2

< exp
(
− 1

2(n + 1)

)
< 1.

Theorem 5.21. Under Assumption 5.19, Algorithm 5.1 returns yi ∈ X(v) with i ≤ 2n(n +
1) log(R

r). Thus the total number of arithmetic operations is bounded by O(n3m log(R
r)).

Proof. If yi /∈ X(v), then there either f (x) ≤ f (yi) or gj(x) ≤ gj(yi) holds for some
j = 1, . . . , m, for all x ∈ X(v). Thus by convexity and Theorem 1.12, we must have
(hi)Tx ≤ (hi)Tyi for any x ∈ X(v). Lemma 5.20 then ensures that E(yi+1, Qi+1) ⊇
X(v) ⊇ Br(y′). Moreover, vol E(yi+1, Qi+1) ≥ vol Br(y′), which implies by the same
lemma that

vol B1(0) · Rn exp
(
− i

2(n + 1)

)
≥ vol B1(0) · rn.

Our assertion then follows by taking the logarithm on both sides.

Theorem 5.21 certifies the polynomial time of the ellipsoid algorithm because the
number of real number arithmetics is polynomially bounded by n, m, and log(1/r).
Here, we do not talk about the encoding size anymore, but log(1/r) behaves in a
similar way as the accuracy of the optimal value. We further remark that the key
step in Algorithm 5.1 is finding the separating vector hi, which is independent from
the construction of the ellipsoids and hence also independent from the convergence.
Thus the algorithm has been generalized to much broader problem classes without
continuous differentiability or even without convexity, assuming the separation oracle,
which returns the desired hi in each iteration. For this reason, people nowadays are very
interested in the complexity bounds for nonlinear optimization algorithms, beyond the
traditional notion of convergence rates defined in Section 2.2.

6 Overview of Constrained Optimization Algorithms

Informally speaking, algorithms for constrained optimization (5.1) can be put into three
categories: primal methods, dual methods, and primal-dual methods. Primal methods
directly update feasible solution xi ∈ X in each iteration i. Dual methods update the
multiplier λi ∈ Λ, in the hope of recovering the primal solution using the KKT condition
and getting a lower bound in the convex case (see Theorem 5.14). Primal-dual methods
aim at solving the KKT conditions directly. In between the primal and the dual methods,
we also have barrier and penalty methods that turn the constrained optimization into a
sequence of unconstrained optimization problems as surrogates.

45

ISEN 623 Spring 2024

6.1 Primal Methods

The challenge of applying the descent methods in Section 3 in a constrained setting is
how to ensure feasibility of the iterates. For illustrative purpose, we will mostly restrict
our attention to linear constraints gj(x) = (aj)Tx + bj for some aj ∈ Rn and bj ∈ R.
Perhaps the simplest idea is to use a linear approximation of the nonlinear objective
function, i.e., let di denote an optimal solution to the following linear optimization

min
d
∇ f (xi)Td

s. t. (aj)Td = 0, j = 1, . . . , m′,

(aj)T(xi + d) + bj ≤ 0, j = m′ + 1, . . . , m,

(6.1)

and then set xi+1 = xi + τidi where τi ∈ arg min0≤τ≤1 f (xi + τdi) can be determined by
the line search subproblem. This is a very simple form of the Frank-Wolfe method, or
reduced gradient method. The latter name comes from the fact that all equality constraints
in (6.1) are simply restricting d to an affine subspace. Assuming linear independence
of a1, . . . , am′ , even though d ∈ Rn, it is determined by only n−m′ of its components
(which can be utilized by linear optimization methods, e.g., the simplex method).
One can further add the restrictions |di| ≤ δi for some δi > 0 in (6.1) to improve the
approximation accuracy, similar to the trust region subproblem we discussed. Such
method is often known as the Zoutendijk method of feasible direction method. Using linear
optimization duality, it is easy to show that if the feasible direction method terminates
with di = 0, then xi is a KKT point.

In practice, the feasible direction method may not have global convergence and can
be very numerically inefficient even for linear constraints. A more popular alternative
is called the active set method. For any working subset Wi ⊆ {m′ + 1, . . . , m}, let
Li := {x ∈ Rn : (aj)Tx + bj = 0, j ∈ E ∪Wi} denote an subspace of Rn defined by the
equality constraints and the working inequality constraints in the iteration i. Then we
solve an unconstrained optimization

yi ∈ arg min
y∈Li

f (y), (6.2)

and set di := yi − xi. The subproblem (6.2) is unconstrained in the sense that by
choosing a basis Q of Li and a vector p ∈ Rn, any y ∈ Li can be written as y = p + Qu
for u ∈ Rn−dim(Li). To ensure feasibility of the next iterate xi+1, we add a restriction
τi ≤ τ̄i to the line search step, where τ̄i := sup{τ ≥ 0 : (aj)T(xi + τdi) + bj ≤ 0, j /∈Wi}.
Thus the iteration will be determined once we pick the subspace Li.

When τi = τ̄i, it means that some new inequality constraint becomes active, and it is
then natural to put it in the working set Wi+1. However, if we keep adding constraints

46

ISEN 623 Spring 2024

into the working set, it is possible that we may end up with a nondegenerate set of n
equations, from which we cannot update our point any more. A good way to drop
constraints from the working set Wi+1 is to look at the KKT multipliers λi at the point xi

∇ f (xi) + ∑
j∈Wi

λi
ja

j = 0. (6.3)

If λi
j ≥ 0 for all j ∈Wi, then one can extend it to a multiplier λ∗ ∈ Λ by setting λ∗j = 0

for all j /∈ Wi and λ∗j = λi
j for all other j. Thus xi is a KKT point so we may terminate

the algorithm. Otherwise, we have λi
j < 0 for some j ∈ Wi. This means that we can

locally improve our function value f by dropping the j-th constraint in the index set Wi.
More precisely, we claim the following.

Exercise 6.1. Suppose λi
k < 0 for some k ∈Wi. Let di be the orthogonal projection of ∇ f (xi)

on L′i := {d ∈ Rn : ∇gj(xi)Td = 0, j ∈Wi \ {k}}. Then di is a feasible descent direction, i.e.,
∇gk(xi)Tdi < 0 and ∇ f (xi)Tdi < 0.

Thus we update our set by

Wi+1 ←Wi ∪ A(xi+1) \ {j : λi+1
j < 0}. (6.4)

Convergence can be established after changing the working set for a finite number of
times.

Theorem 6.2. Suppose that for every subset W of {m′ + 1, . . . , m}, the unconstrained opti-
mization problem (6.2) is well-defined and has a unique solution. Then the points generated by
the active set method with working set updates (6.4) converges to a KKT point of (5.1) after a
finite number of changes in the working set.

Proof. The proof directly follows from Exercise 6.1: after each update of the working
set Wi to Wi+1, we either find a KKT point when λi

j ≥ 0 for all j ∈ Wi, or have a strict
decrease in the objective when λi

k < 0 for some k ∈ Wi. In the latter case the working
set Wi cannot be used again by our assumption of the uniqueness, so our method
terminates in finitely many working set updates because there are only finitely many
subsets W of {m′ + 1, . . . , m}.

In some sense, the active set method can be viewed as a generalization of the simplex
method for linear optimization, and it can be efficiently applied to linearly constrained
convex quadratic optimization problems, where the solution to (6.2) can be found
through matrix inversion. The active set method can also be extended to nonlinear
constraints, assuming LICQ or some other regularity condition on the constraints E∪Wi

in each iteration i. We refer to [BN23, Section 9.1] for more detailed discussion.

47

ISEN 623 Spring 2024

6.2 Barrier and Penalty Methods

The idea of transforming constrained optimization into unconstrained ones can be
realized more directly through a barrier or penalty method. Consider an inequality-only
constrained optimization problem

min f (x)
s. t. gj(x) ≤ 0, j = 1, . . . , m,

(6.5)

We assume that Slater condition holds, i.e., X := {x ∈ Rn : gj(x) ≤ 0, j = 1, . . . , m} has
a nonempty interior and tackles the following problem as a surrogate for eq. (6.5)

min f (x) + 1
c

b(x)

s. t. x ∈ int X,
(6.6)

where c > 0 is a chosen parameter and b(x) is a barrier function satisfying
• b(x) is continuous on int X,
• b(x) is bounded from below, i.e., there exists a ∈ R such that b(x) ≥ a for any

x ∈ X, and
• b(x)→ +∞ when x approaches the boundary of X.

If we start with some x0 ∈ int X in (6.6), then the last condition will ensure we stay
within the interior of X using any descent method. Thus the barrier method is often
called interior-point method. Common choices for the barrier function include

• the reciprocal barrier function

b(x) = −
m

∑
j=1

1
−gj(x) ,

• and the logarithmic barrier function

b(x) = −
m

∑
j=1

log(−gj(x)).

Exercise 6.3. The reciprocal and logarithmic barrier functions are well-defined and satisfy all
three conditions for barrier functions.

In practice, the logarithmic barrier function is more popularly used. Note that while
we ensure the feasibility of any solution returned by (6.6), we compromise its optimality
in terms of the original constrained optimization problem (6.5). A larger value of the
parameter c > 0 can mitigate this issue because h(x, c) := f (x) + b(x)/c decreases for
every x as c increases. Very often people take an adaptive strategy to increase c. Let
{ck}∞

k=0 be a monotone increasing sequence ck+1 > ck for each k, and let xk denote the

48

ISEN 623 Spring 2024

(global) solution to (6.6) for c = ck.

Theorem 6.4. Any limit point of the sequence {xk}∞
k=0 generated by the barrier method is a

solution to the constrained optimization problem (6.5).

Proof. The assertion is trivial if the sequence does not have any limit point. Thus by
restricting our attention to a subsequence, we may assume xk → x∗ for some x∗ ∈ X,
as X is closed. Assume for contradiction that x∗ /∈ arg minx∈X f (x). Then we can find
x′ ∈ int X such that f (x∗) > f (x′) + δ for some δ > 0. Thus for any ck, we have

f (xk) + 1
ck

b(xk) = h(xk, ck) ≤ h(x′, ck) = f (x′) + 1
ck

b(x′).

Let a := infx∈X b(x) > −∞. It follows that

f (xk) ≤ f (x′) + 1
ck

(b(x′)− a).

For all sufficiently large k, this implies that f (xk) ≤ f (x′) + δ
2 < f (x∗), which contradicts

with the assumption xk → x∗ because of the continuity of f .

When there are equality constraints, the interior of X may be empty, so it is not easy
to apply the barrier method. Instead, we can consider a penalized problem

min
x∈Rn

f (x) + ρp(x), (6.7)

where ρ > 0 is a chosen parameter and p(x) is a penalty function satisfying
• p(x) is continuous and nonnegative for all x ∈ Rn,
• p(x) = 0 if and only if x ∈ X.

Popular choices of penalty functions include
• the quadratic penalty function

p(x) =
m′

∑
j=1

g2
j (x) +

m

∑
j=m′+1

max{gj(x), 0}2,

• and the absolute value penalty function

p(x) =
m′

∑
j=1
|gj(x)|+

m

∑
j=m′+1

max{gj(x), 0}.

Exercise 6.5. The quadratic and absolute value penalty functions satisfy the two conditions
for penalty functions. Moreover, the quadratic penalty function is continuously differentiable
assuming that g1, . . . , gm are.

49

ISEN 623 Spring 2024

As in the case of barrier methods, we would have optimal solutions asymptotically
by increasing our parameter ρ. More precisely, let {ρk}∞

k=0 be a monotone increasing
sequence with ρk+1 > ρk for each k. Suppose xk is the global minimum to the penalty
problem (6.7) with ρ = ρk. Then with a similar argument as in Theorem 6.4, one can
prove the following.

Exercise 6.6. Any limit point of the sequence {xk}∞
k=0 generated by the penalty method is a

solution to the constrained optimization problem (5.1).

Unlike the barrier method, the penalty method does not always maintain the feasi-
bility of the iterates xk. It is then natural to ask whether we can ensure xk ∈ X if we set
ρk to be large. The answer is negative for the quadratic penalty function, as illustrated
by the following example.

Example 6.7. Consider the constrained optimization

min x

s. t. x = 0,

which obviously has the optimal value 0 and the feasibility set X = {0}. For any ρ > 0, the
penalty surrogate is

min x + ρx2,

which has the optimal value − 1
4ρ with the unique solution x∗ = − 1

2ρ /∈ X for any ρ > 0.

Example 6.7 shows that the quadratic penalty function may not guarantee feasibility
of the solution xk no matter how large the parameter ρk is set. One way to work around
this is to use the absolute value penalty function instead, which leads to exactness
much more often than the quadratic penalty function. However, if we want to keep
our objective function in the penalty subproblem (6.7) continuously differentiable, an
alternative approach is to use the Lagrange multipliers as described in the next section.

6.3 Dual Methods

The name of dual methods comes from Lagrangian duality, as discussed in Section 5.1
for convex problems. To illustrate, let us assume that we only have linear equality con-
straints gj(x) = 0, j = 1, . . . , m. One way to see the effect of violating these constraints
is through the perturbation function

p(u) := min{ f (x) : gj(x) = uj, j = 1, . . . , m} (6.8)

50

ISEN 623 Spring 2024

for some vector u ∈ Rm. Then our constrained optimization problem is equivalent to
the evaluation of p(0), or

min p(u)
s. t. u = 0.

(6.9)

Exercise 6.8. Suppose f is convex and g1, . . . , gm are linear functions, then the perturbation
function p is also a convex function. Moreover, p is strongly convex if so is f .

Assuming strong duality holds for (6.9), then we can solve the Lagrangian dual
problem

max
λ∈Rm

min
u∈Rm

p(u) + λTu = max
λ∈Rm

min
x∈Rn

f (x) +
m

∑
j=1

λjgj(x), (6.10)

to get an optimal multiplier λ∗ ∈ Rm such that p(0) = minu∈Rn{p(u) + (λ∗)Tu}. When
the function f is further strongly convex, then by Exercise 6.8 we know there is a unique
solution u∗ = 0 and a unique solution

x∗ ∈ arg min
x∈Rn

{
f (x) +

m

∑
j=1

λ∗j gj(x)
}

, (6.11)

so gj(x∗) = u∗j = 0 for j = 1, . . . , m. In other words, the solution from the unconstrained
problem (6.11) must be feasible to the constrained problem, which can be found effi-
ciently using methods discussed in Sections 3 and 4. In general, instead of assuming
f is strongly convex, we may assume that the Hessian ∇2

xxL(x∗, λ∗) ≻ 0 is positive
definite at a local minimum x∗, so that the solution is still well-defined and numerically
attainable if we restrict to a neighborhood Bϵ(x∗) in (6.11). In plain words, we may
recover feasibility if we find an optimal multiplier and start our local unconstrained
optimization iteration sufficiently close to the true local minimum.

Challenges arise when f is not strongly convex. Even in the context of linear
optimization, it is not guaranteed that we will recover feasibility by solving the uncon-
strained problem (6.11). It is even worse if f is not convex, so that strong duality is
quite unlikely to hold for (6.9). One way to tackle this is to “convexify” the problem by
considering

min p(u) + ρ∥u∥2
2

s. t. u = 0,
(6.12)

for some chosen parameter ρ > 0. The reformulation (6.12) is equivalent to (6.9), but the
sum p(u) + ρ∥u∥2

2 can often become strongly convex for large ρ, e.g., when p ∈ C2(U)
for some neighborhood U containing 0. In this case, we can solve the problem

max
λ∈Rm

min
u∈Rm

p(u) + λTu + ρ∥u∥2
2, (6.13)

51

ISEN 623 Spring 2024

or equivalently

max
λ∈Rm

min
x∈Rn

Lρ(x, λ) := f (x) + λTg(x) + ρ∥g(x)∥2
2, (6.14)

where g(x) := (g1(x), . . . , gm(x)) ∈ Rm. Problem (6.14) is known as the augmented La-
grangian dual to the original constrained problem. Once we obtain an optimal multiplier
λ∗ from (6.13) or (6.14), then we can recover a feasible and optimal solution from the
unconstrained problem

x∗ ∈ arg min
x∈Rn

L(x, λ∗). (6.15)

So far we have been focusing on recovering feasible solutions after obtaining an
optimal multiplier λ∗. Algorithms for finding such a multiplier can be developed based
on the following observation. Let

ϕρ(λ) := min{p(u) + λTu + ρ∥u∥2
2 : u ∈ Rm} (6.16)

denote the augmented Lagrangian dual function associated with the problem (6.12).
Then the gradient of ϕρ exists if the minimizer is unique in (6.16).

Exercise 6.9. Suppose {u∗} = arg min{p(u) + λTu + ρ∥u∥2
2 : u ∈ Rm} for some λ ∈ Rm.

Then ∇ϕ(λ) = u∗.

A simple example of the dual ascent method is the following. In each iteration i, we
• find xi+1 ∈ arg minx∈Rn Lρ(x, λi),
• and update λi+1 = λi + 1

ρ g(xi+1).
The step length 1

ρ is set to be constant, which is a simplified (yet often very practical)
version compared to the line search methods in Section 3.3 as it avoids the repeated
evaluation of the inner minimization. It is noteworthy that the resulting sequence
{ϕρ(λi)} may not be monotone, so caution may be needed on when to terminate the
algorithm.

Most of the discussion here can be generalized to inequality constraints. The aug-
mented Lagrangian dual method also relates to the penalty method, as the term λTg(x)
can be viewed as a special penalty function. We illustrate this by the following example
(cf. Example 6.7).

Example 6.10. Consider the constrained optimization in Example 6.7. For any ρ > 0, the
augmented Lagrangian dual is

max
λ

min
x

x + λx + ρx2.

By setting λ∗ = −1, we see that the unique optimal solution is x∗ = 0, which is feasible to the
original problem.

52

ISEN 623 Spring 2024

References

[BN23] Aharon Ben-Tal and Arkadi Nemirovski. Lecture Notes Optimization III: Convex
Analysis, Nonlinear Programming Theory, Nonlinear Programming Algorithms.
2023.

[CGT00] Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region
methods. SIAM, 2000.

[Coh72] Arthur I Cohen. “Rate of convergence of several conjugate gradient algo-
rithms”. In: SIAM Journal on Numerical Analysis 9.2 (1972), pp. 248–259.

[HZ06] William W Hager and Hongchao Zhang. “A survey of nonlinear conjugate
gradient methods”. In: Pacific journal of Optimization 2.1 (2006), pp. 35–58.

[Lee12] John M Lee. Introduction to Smooth Manifolds. Spinger, 2012.

[LY21] David G Luenberger and Yinyu Ye. Linear and nonlinear programming. Vol. 2.
Springer, 2021.

[MK85] Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic
and nonlinear programming. Tech. rep. 1985.

[NW06] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 2006.

[Rud76] Walter Rudin. Principles of mathematical analysis. Vol. 3. McGraw-Hill New
York, 1976.

[Zor15] Vladimir A. Zorich. Mathematical Analysis I. Springer-Verlag, Berlin, 2015.

53

	Introduction
	Smooth Functions and Optimization
	Convex Sets and Functions

	Essentials of Unconstrained Optimization
	Solutions and Optimality Conditions
	Iterative Algorithms and Newton's Method

	Basic Descent Methods
	Global Convergence
	Trust Region Methods
	Line Search Methods

	First-Order Descent Methods
	Conjugate Gradient Methods
	Quasi-Newton Methods

	Essentials of Constrained Optimization
	Optimality Conditions and Constraint Qualification
	Introduction to Complexity Theory

	Overview of Constrained Optimization Algorithms
	Primal Methods
	Barrier and Penalty Methods
	Dual Methods

